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Grammar-Based Algorithms for Solving Linear Diophantine Systems 531 Introdu
tionLet Z be a set of integers and Z+ be a set of non-negative integers. Asystem of n non-negative linear Diophantine equations (NLDE) in m un-knowns 
an be written as follows:Ax = b ; (1.1)where A is an integer (n �m)-matrix, x 2 Zm+ is a ve
tor of unknowns,and b is a ve
tor in Zn. Solutions of system (1.1) is restri
ted with non-negative integer ve
tors that is a reason for the letter �N� to be in theintrodu
ed notation �NLDE�.As a rule, a 
omplete solution for system (1.1) means sear
hing itsHilbert basis�a pair (N ;H) of finite sets su
h that a set S of all solutions
an be represented as (see [1, 2℄)S = N +H�;whereH� is a set of all non-negative linear 
ombinations of elements of H.In other words, any solution x 2 S 
an be expressed asx = h(0) + qXs=1 �sh(s) ; h(0) 2 N ; H = nh(1); h(2); : : : ; h(q)ofor arbitrary non-negative integers �s, s = 1; 2; : : : ; q. Elements of N areall minimal1 solutions of system (1.1). Elements of H are all minimalsolutions of the 
orresponding homogenous system:Ax = O : (1.2)A problem of finding any solution for system (1.1) is known to beNP-
omplete [1℄. Sear
hing of the whole basis is even more 
omplex, be-
ause the 
ardinality of the basis in
reases exponentially with n, m andjj(A; b)jj, where jj(A; b)jj is a norm of 
oeffi
ients. The study of spe
ial
lasses of NLDE systems is therefore 
on
entrated in 
onstru
ting algo-rithms dedi
ated for these parti
ular 
lasses. An interesting 
ase is NLDEsystems asso
iated with 
ontext-free (CF) grammars. They were firstlyintrodu
ed by M. Filgueiras and A. Tom�as [3℄ (some parti
ular type ofthese systems).1A solution x is minimal if there is no other solution y su
h that x � y (the
omponent-wise partial order xi � yi, i = 1; 2; : : : ;m). It is easy to see that if x is notminimal then it 
an be de
omposed as x = y + h, where h is a non-zero solution ofhomogenous system (1.2).



54 Dmitri G. KorzounIn this paper we introdu
e a 
lass of the asso
iated NLDE system(ANLDE) in a more general form than in [3℄ and present new algorithmsfor solving some of its sub
lasses. These algorithms are 
hara
terized withpolynomial or pseudo-polynomial time 
omplexity and are signifi
antlymore effi
ient than existing �universal� algorithms for solving arbitraryNLDE systems.We use the terminology and notation of the formal languages theorysimilar to monographs of A. Aho and J. Ullman [4℄, and S. Sippu andE. Soisalon-Soininen [5℄. A CF-grammar G is defined as a quadruple(N;�; P; S), where N = fA1; A2; : : : ; Ang is a nonterminal alphabet, � =fa1; a2; : : : ; atg is a terminal alphabet, P = fr1; r2; : : : ; rmg is a set ofgrammar rules in the form ri = (Ak ! p) for some nonterminal Ak 2 Nand string p 2 (N [�)�, S is a start symbol. For the study a start symbolis not important and we denote a grammar as G = (N;�; P; �).The rest of the paper is organized as follows. In Se
tion 2 we introdu
ea 
lass of ANLDE system, 
onsider its important sub
lasses and dis
usssome properties of these systems related to CF-grammars. Based on theseproperties we present in Se
tion 3 several new effi
ient algorithms forsear
hing Hilbert basis of the systems belonging to the sub
lasses.2 Systems Asso
iated with Context�FreeGrammarsIn this se
tion we introdu
e a wide 
lass of NLDE systems. The sys-tems are 
onstru
ted a

ording to a given CF-grammar and two arbitrarystrings over the grammar alphabet. The solutions of these systems arestrongly 
onne
ted with 
ertain derivations in the grammar and this prop-erty is intensively used to 
onstru
t several solving algorithms presentedin Se
tion 3. The detailed theoreti
al ba
kground of the dis
ussed issues
an be found in [6�9℄.2.1 Constru
tionLet G = (N;�; P; �) be a CF-grammar and strings w0; w00 2 (N [ �)�.One 
an 
onstru
t the following NLDE system:8>><>>: Pi2HA xi + �A = nPi=1 
iA xi + �A for all nonterminals A 2 NnPi=1 
iA xi + �a = �a for all terminals a 2 � ; (2.1)



Grammar-Based Algorithms for Solving Linear Diophantine Systems 55where HA is a set2 of indi
es of those grammar rules whose left-hand sideis equal to the nonterminal A; the values �A and �a are the numbersof o

urren
es in the string w0 respe
tively the nonterminal A and theterminal a; the values �A and �a are the same as �A and �a but in thestring w00; the values 
iA and 
ia are the numbers of o

urren
es in aright-hand side of the rule ri respe
tively A and a.The system has m+ t equations�one for ea
h symbol (nonterminal orterminal) and n unknowns�one for ea
h grammar rule. Ea
h unknown xiis allowed to take non-negative integers only. This system is 
alled anasso
iated NLDE system (ANLDE), and the 
orresponding grammar�agenerative grammar.Let a derivation w0 )+ w00 exist in G. We 
onsider a ve
tor � 2 Zn+su
h that ea
h 
omponent �i is equal to the number of times the rule riis applied during the fixed derivation w0 )+ w00.Theorem 1 The ve
tor � is a solution of system (2.1).This fa
t3 is explained as follows. At the beginning of any su

essfulderivation w0 )+ w00 there is �A o

urren
es of ea
h nonterminal A,be
ause we start the derivation with the string w0. At the end it is equalto �A, be
ause we finish the derivation with the string w00. The sumPi2HA �i is the number of times the nonterminal A is expanded during thederivation, the se
ond sum nPi=1 
iA�i is the number of times it is produ
ed:ea
h expansion of A with a rule ri de
rements by one the number ofo

urren
es of A in the 
urrent sentential form and in
rements by 
iBthe number of o

urren
es of ea
h nonterminal B 2 N . Thus, there were�A nonterminals A in w0, then nPi=1 
iA�i o

urren
es of the nonterminalA had appeared and Pi2HA �i o

urren
es simultaneously had disappeared,but at the end of the derivations �A o

urren
es are preserved. This is areason for � to satisfy all nonterminal equations of the system. Similarly,the number of times a terminal o

urs in w00 is equal to a sum of thenumber of times it o

urs in w0 and the number of times it is produ
ed4.2Formally HA = fi j ri = (A ! p)g, where ri is the ith grammar rule, A is aleft-hand side and p is a right-hand side of the rule.3See the proof in [6℄.4Terminals 
an not be expanded in 
ontrast to nonterminal symbols.



56 Dmitri G. Korzoun2.2 Sub
lasses of the Asso
iated SystemsRestri
ting w0 and w00 one 
an derive some parti
ular sub
lasses ofANLDE systems (2.1). Let us introdu
e several of them.Derivation of a senten
e starting from a nonterminalIn this 
ase the string w0 is a single nonterminal Ak, w00 is a senten
e de-rived from Ak in G: w00 2 LG(Ak), where LG(Ak) is a set of all sententialforms of Ak in G, or in other words the language generated by Ak .8>>>>>><>>>>>>: Pi2HAk xi = nPi=1 
iAk xk + 1 for the start symbol AkPi2HA xi = nPi=1 
iA xk for all A 2 N n fAkgnPi=1 
ka xi = �a for all a 2 � ; (2.2)The nonterminal Ak is 
onsidered as a start symbol of G. This sub
lassof ANLDE systems was introdu
ed by M. Filgueiras and A. Tom�as [3℄.Derivation of empty string starting from a nonterminalA parti
ular 
ase of previous one when w0 = Ak, w00 = ". It is evidentthat there must be no terminal symbols in any derivation Ak )+ ".8>><>>: Pi2HAk xi = nPi=1 
iAk xi + 1 for the start symbol AkPi2HA xi = nPi=1 
iA xi for all A 2 N n fAkg ; (2.3)We denote su
h a system as "-ANLDE system.Nonterminal�to�nonterminal derivationHere w0 = Ak, w00 = Aj . If k 6= j then ANLDE system has the form:8>>>>>>><>>>>>>>:
Pi2HAk xi = nPi=1 
iAkxi + 1Pi2HAj xi + 1 = nPi=1 
iAjxiPi2HA xi = nPi=1 
iA xi for all A 2 N n fAk; Ajg ; (2.4)We denote su
h a system as (A,B)-ANLDE system. In the 
ase of k = jthe system is homogenous:



Grammar-Based Algorithms for Solving Linear Diophantine Systems 57Xi2HA xi = nXi=1 
iA xi for all A 2 N : (2.5)It is 
alled a homogenous ANLDE system.2.3 Solutions, derivations and 
y
lesA 
y
le is a derivation A )+ �A� for some strings �; � 2 (N [�)�. A
y
le is empty if �� = ". A derivation � )+ � is minimal if it does not
ontain empty 
y
les. An empty 
y
le is minimal if it does not 
ontainanother empty 
y
le.Theorem 1 states that for any derivation w0 )+ w00 there is the 
orre-sponding solution � of system (2.1). However there may exist su
h solu-tions that 
orrespond to another derivation v0 )+ v00 or su
h ones that donot 
orrespond to any su

essful derivation in the generative grammar G.Moreover, it is possible that w00 is not derivable from w0 in G. The first
ase appears be
ause the asso
iated system does not 
ontain informationon the order of symbols in sentential forms. The reason of the se
ond 
aseis the existen
e of 
y
les in the grammar.A minimal (basis) solution of ANLDE system does not always 
orre-spond to a standard derivation w0 )+ w00. For this reason we introdu
e ageneralized derivation as a set of standard derivations fw01 )+ w001 ; w02 )+w002 ; : : : ; w0l )+ w00l g su
h that for ea
h grammar symbol X 2 N [ � theequalityo

(X;w001w002 : : : w00l )� o

(X;w01w02 : : : w0l) = o

(X;w00)� o

(X;w0)is satisfied, where o

(X;w) is the number of o

urren
es of the symbolX in the string w.It 
an be proved that any solution of ANLDE-system 
orresponds toa minimal generalized derivation plus a non-negative linear 
ombinationof all minimal empty 
y
les of the grammar.Theorem 2 Any solution of ANLDE system (2.1) 
an be expressed as5:x = yw0)+w00 + y" ; (2.6)5The proof 
an be found in [6℄



58 Dmitri G. Korzounwhere yw0)+w00 is a solution 
omponent 
orresponding to a minimal gen-eralized derivation w0 )+ w00, y" is a 
omponent 
orresponding to amultiset6 of minimal empty 
y
les.Theorem 2 redu
es a problem of solving ANLDE system to sear
h-ing some minimal derivations and empty 
y
les in G. These minimalderivations form the set N of all minimal solutions of system (2.1), andthe minimal empty 
y
les form the set H of all minimal solutions of thehomogenous system for (2.1).Example 1 Let G be a CF-grammar with N = fA1; A2g, � = ?, andP = f A1 ! A1A1A2 ; A1 ! A2A2 ; A2 ! A1A1A1A2 ; A2 ! " g.G and (A1; ") generate the "-ANLDE system:� x1 + x2 = 2x1 + 3x3 + 1x3 + x4 = x1 + 2x2 + x3 =) � x2 = x1 + 3x3 + 1x4 = x1 + 2x2The derivation A1 2) A2A2 3) A2A1A1A1A2 4) A2A1A1A1A1 4)A1A1A1A1 2;2;2=) +A2A2A2A2A2A2 4) A2A2A2A2A2 4;4;4;4=) +A2 4) "
orresponds to the nonminimal solution x = (0; 4; 1; 8). It 
an bede
omposed as x = yA1)+" + y" = (0; 1; 0; 2) + (0; 3; 1; 6), whereyA1)+" 
orresponds to the minimal derivation A1 2) A2A2 4)A2 4) ", and y" 
orresponds to the minimal empty 
y
le A2 3)A1A1A1A22;2;2=)+A2A2A2A2A2A2A24;4;4;4;4;4=)+A2 or the similar minimal empty
y
le A1 2) A2A2 3) A1A1A1A2A2 2;2=)+A1A2A2A2A2A2A24;4;4;4;4;4=)+A1.The Hilbert basis is N = f(0; 1; 0; 2g and H = f(0; 3; 1; 6); (1; 1; 0; 3)g,where the minimal solution (1; 1; 0; 3) of the homogenous system 
orre-sponds to the minimal empty 
y
le A1 1) A1A1A2 2) A1A2A2A2 4;4;4=)+A1.3 Solving the Asso
iated SystemsA large number of various algorithms have been proposed by numerousauthors for solving linear Diophantine equations: G. Huet [10℄, M. Clausenand A. Fortenba
her [11℄, E. Contejean and H. Devie [12℄, A. Tom�asand M. Filgueiras [13℄, L. Pottier [14℄, A. Boudet and H. Comon [15℄,E. Domenjoud and A. Tom�as [2℄, E. Contejean [16℄, and F. Ajili andE. Contejean [17℄. The most of them solve homogenous systems, be
auseany NLDE-system 
an be transformed into an equivalent homogenous6Multiset is a set in whi
h elements may be repeated.



Grammar-Based Algorithms for Solving Linear Diophantine Systems 59one. These algorithms are based on some enumeration methods and itmakes them appli
able only if absolute values of 
oeffi
ients jj(A; b)jj anddimension n�m are small.In this se
tion we introdu
e several new effi
ient algorithms for solvingi) "-ANLDE systems (2.3), ii) (A,B)-ANLDE system (2.4), and iii) ho-mogenous ANLDE systems (2.5).3.1 Strings and ve
tors of Zn+t+ANLDE system (2.1) does not take into a

ount the order of symbols instrings involved in derivations. It means that there is no need to preservethe order during a derivation. As a result one 
an get more effi
ient waysto store strings over N [ �.Any string in (N [ �)� 
an be des
ribed with a ve
tor � 2 Zn+t+ . Ea
h
omponent �l (l = 1; 2; : : : ; n+ t) is equal to the number of o

urren
es ofea
h symbol of N[� = fX1; X2; : : : ; Xn+tg in this string. As a result, thederivation w0 )+ w00 
an be presented as a path in Zn+t+ . This des
riptionis signifi
antly more pra
ti
al than to store a string dire
tly as it 
an havean arbitrary length.Example 2 Let G be a CF-grammar from Example 1. It 
an be storedas the following matrix: 0BB� 1 2 11 0 22 3 12 0 0 1CCAThe derivation A1 2) A2A2 3) A2A1A1A1A2 4) A2A1A1A1A1 4)A1A1A1A1 2;2;2=)+A2A2A2A2A2A2 4) A2A2A2A2A2 4;4;4;4=)+A2 4) " 
an bepresented as the path in Z2+: (1; 0)! (0; 2)! (3; 2)! (4; 1)! (4; 0)!+(0; 6)! (0; 5)!+ (0; 1)! (0; 0).3.2 Algorithm for solving "-ANLDE systemsLet �k be a set of all minimal solutions of "-ANLDE system (2.3). In this
ase any solution � 2 �k 
orresponds to a standard derivation Ak )+ ".The simplest elements of �k 
orresponds to one-step derivations a

ordingto a grammar rule Ak ! ", i.e. if there exists a rule ri = (Ak ! "), thena ve
tor �(k) = (0; : : : ; 0; 1; 0; : : : ; 0) 2 Zm is a solution (the only 1 is



60 Dmitri G. Korzounon the ith pla
e�the only appli
ation of the rule ri). To find all otherelements of �k one 
an use the well-known Dijkstra algorithm�a verysimilar algorithm is known to de
ide whether or not empty string " belongsto the language L(Ak), see [4, 5℄.Algorithm 1 sums up these ideas. It uses the following notations:p� is a set of all possible sums of p elements from � (these elements maybe repeated). Formally p� = f�i1+�i2+: : :+�ip j �i1 ; �i2 ; : : : ; �ip 2�g. For example, for p = 3 and � = f(1; 2; 0); (0; 0; 3)g the set p�is equal to f(3; 6; 0); (2; 4; 3); (1; 2; 6); (0; 0; 9)g.Algorithm 1 All minimal solutions of "-ANLDE system(for all nonterminal symbols Ak, k = 1; 2; : : : ; n)Require: Sets N and P ,N = fA1; A2; : : : ; Ang �nonterminal alphabet,P = fr1; r2; : : : ; rmg �grammar rules in the form r = (Ak ! p) 2 P ,(p is presented as (p1; p2; : : : ; pn) 2 Zn+).Ensure: Sets �k for ea
h k = 1; 2; : : : ; n.�k  ? k = 1; 2; : : : ; n; {At the beginning �k are empty sets}{Initialization of �k with the simplest empty rules Ak ! "}for all ri 2 P su
h that ri = (Ak ! ") do�  (0; 0; : : : ; 1; : : : ; 0); {the only 1 is on the ith position}�k  �k [ f�g;end formodif_flag truewhile modif_flag= false do {Iteration of all �k}modif_flag falsefor all ri = (Ak ! p) 2 P doU  min (ei + p1�1 + p2�2 + : : :+ pn�n;�k);if U 6= ? thenmodif_flag true;�k  �k [ U ;end ifend forend while



Grammar-Based Algorithms for Solving Linear Diophantine Systems 61�0 +�00 is a set of all possible sums of an element form �0 and an elementfrom �00. Formally �0 + �00 = f�0 + �00 j �0 2 �0; �00 2 �00g.For example, for �0 = f(3; 6; 0); (2; 4; 3); (1; 2; 6); (0; 0; 9)g and �00 =f(0; 5; 2)g the sum �0 +�00 = f(3; 11; 2); (2; 9; 5); (1; 7; 8); (0; 5; 11)g.min(�0;�) is a set of all minimal elements from �0 [ �. For-mally min(�0;�) = f� 2 �0 [ � j ��0 2 �0 [ �; �0 � �; �0 6= �g.For example, for �0 = f (1; 2; 0); (3; 0; 1); (0; 0; 2) g and � =f (0; 2; 0); (3; 0; 1) g the set min(�0;�) 
ontains the only ve
tor(0; 0; 2).At ea
h step of the iteration the algorithm 
onstru
ts a set U =min (ei + p1�1 + p2�2 + : : :+ pn�n;�k). It means that it tries to usea rule ri = (Ak ! p) as the first rule of a derivation Ak ) ". The appli-
ation of the rule results in a sentential form that is equal to its right-handside�there are p1 o

upan
ies of A1, p2 o

upan
ies of A2, . . . , and pno

upan
ies of An. Thus, to redu
e it to " one should use p1 derivationsA1 )+ ", p2 derivations A2 )+ ", . . . , and pn derivations An )+ ".Algorithms sear
hing the Hilbert basis 
an not be 
onsidered as NPproblems, be
ause in general their output (N ;H) is sized exponentially onthe input dimensions n�m. Thus we introdu
e an additional parameterM that limits the size of the output and it will be used to des
ribe the
omplexity among with standard n andm. We 
all the 
omplexity polyno-mial if it is O(n�m�M
) for some �; �; 
 � 0. The 
omplexity is pseudo-polynomial if a bound on absolute values of input (jj(A; b)jj � 
onst)makes it polynomial.The total time 
omplexity of Algorithm 1 is determined by the itera-tion stage (Dijkstra algorithm). Let the 
ardinality of ea
h �k be limitedwith a 
onstant M : j�kj � M for all k = 1; 2; : : : n. In the worst 
ase atea
h iteration there is only one element added to some �k, i.e. jU j = 1.Thus, the number of the iterations is limited by Mnm.The 
omputation of U 
onsumes additional time. Let N = maxfpj jri = (Ak ! p) 2 Rg. Any set pj�k 
ontains no more then CNM+N�1elements. Therefore jp1�1 + p2�2 + : : :+ pn�nj � �CNM+N�1�n. Onthis assumption the 
omplexity of the iteration stage is equal to(Mnm) �CNM+N�1�nm. Fortunately, it is possible to redu
e the 
omplex-ity of U 
omputation, 
onstru
ting only those elements that are reallyne
essary for �k and not to spend time for extra solutions (nonmini-



62 Dmitri G. Korzounmal or previously found). It means U 
an be 
onstru
ted in time Mnm.Therefore, we haveTheorem 3 Sets �k 
an be 
onstru
ted by Algorithm 1 in time7mn+ (Mnm)(Mnm) = O(M2n2m2) = O(M2m4) :The theorem gives an upper bound of the time 
omplexity of Algo-rithm 1. In pra
ti
e, this algorithm works faster, be
ause the number ofthe iterations and the 
ardinality of U 
ompensate ea
h other.The most important disadvantage of the algorithm is that it solves n"-ANLDE systems simultaneously, but it is not likely to be a satisfa
toryway to sear
h �k separately.3.3 Algorithm for solving (A,B)-ANLDE systemsFor solving the (Ak,Aj)-ANLDE system one 
an use the sets �k 
on-stru
ted by Algorithm 1. Let Ckj be a set of all minimal solutions of the(Ak,Aj)-ANLDE system. Let ri = (Ak ! p) be a grammar rule. Thesimplest solutions 
orresponding to Ak )+ Aj belong to the set:p1�1 + p2�2 + : : :+ pj�1�j�1 + (pj � 1)�j + pj+1�j+1 + : : :+ pn�n :It means that the algorithm tries to use the rule ri as the first rule of aderivation. Redu
ing the sentential form p to Aj requires p1 derivationsA1 )+ ", p2 derivations A2 )+ ", . . . , pj � 1 derivations Aj )+ ", . . . ,and pn derivations An )+ ", This is performed in the initialization stageof Algorithm 2.Unfortunately, this does not result in all possible minimal solutions,but it is a 
omplete base for the next stage that iteratively 
onstru
ts theremaining solutions; if there are two derivations Ak )+ As and As )+Aj then they 
an be 
ombined in the derivation Ak )+ Aj .Let M be a 
onstant limiting the 
ardinality of all sets �k and Ckj .The initialization stage of Algorithm 2 works in time Mnm2. The itera-tion stage (transitive 
losure) works in time n3M3m.Theorem 4 Sets Ckj 
an be 
onstru
ted by Algorithm 2 in timeMnm2 +M3n3m = O(M3m4) :7For any ANLDE system n � m.



Grammar-Based Algorithms for Solving Linear Diophantine Systems 63Algorithm 2 All minimal solutions of (Ak,Aj)-ANLDE systemAk; Aj 2 N for all k; j = 1; 2; : : : ; nRequire: Sets N , P and �k,N = fA1; A2; : : : ; Ang is a nonterminal alphabet of the grammar,P = fr1; r2; : : : ; rmg is the grammar rules in the form r = (Ak!p) 2 P ,�k is the set of all minimal solutions of "-ANLDE system for the non-terminal Ak 2 N , k; j = 1; 2; : : : ; n.Ensure: Sets Ckj for all k; j = 1; 2; : : : ; n.Ckj  ? k; j = 1; 2; : : : ; n; {At the beginning Ckj are empty sets}for all ri = (Ak ! p) 2 P do {Initialization of the sets Ckj}for j = 1 to n doif pj > 0 thenU  min�ei + p1�1 + p2�2 + : : :+ pj�1�j�1 + (pj � 1)�j++pj+1�j+1 + : : :+ pn�n; Ckj�;Ckj  Ckj [ U ;end ifend forend forfor s = 1 to n do {Transitive 
losure of the sets Ckj}for k = 1 to n, k 6= s dofor j = 1 to n, j 6= s doU  min (Cks + Csj ; Ckj);Ckj  Ckj [ U ;end forend forend forThis algorithm 
an be used for solving the most important ANLDEsub
lass�homogenous ANLDE. In this 
ase nSk=1Ckk is a set of all minimalsolutions of homogenous ANLDE system (2.5) (all minimal empty 
y
les).Algorithm 2 simultaneously 
onstru
ts all sets Ckj . However, thereis an algorithm based on Algorithm 1 that simultaneously 
onstru
ts



64 Dmitri G. Korzounall �l and Ckj for fixed k and j. This algorithm uses a fa
t that8
(kj) + �(j) = �(k), where 
(kj) 2 Ckj , �(j) 2 �j , and �(k) 
orrespondsto Ak )+ ". We omit to present this algorithm in the paper be
auseits understanding requires additional theoreti
al ba
kground. This algo-rithm is more effi
ient than Algorithm 2 both in time and spa
e, and itstheoreti
al time 
omplexity is O(M2m4).3.4 TestsWe have tested the algorithms on spe
ially generated homogenousANLDE systems. The dimensions of the generated systems were in range:n 2 [1; 1000℄, m 2 [n; n+ 200℄, pj 2 [0; 500℄. The systems were generatedin su
h a way that ea
h of them has at least one solution but not morethan 200. Figures 1 and 2 shows the results on 7267 sample.To test the implementation we use an integer linear programmingsolver9. It 
an find only one solution in a

ordan
e with some 
ost fun
-tion. For ea
h ANLDE system we run our algorithm to 
onstru
t H, thenrun the ILP solver several times and tested that the found solution 
ouldbe represented with the Hilbert basis. The ILP solver used signifi
antlymore time than our grammar-based algorithm�several hours or days10,but our algorithm nearly always worked in less than a minute.The experiment results approve nonlinear in
reasing of the 
omplexity(see Figure 1). In Figure 2 we 
an see that the 
omplexity is approxi-mately linear if one 
onsiders it as a fun
tion of the number of minimalsolutions. It allows to 
on
lude that the algorithm works approximatelyin time �(Mm2) in the average 
ase.The angle of the 
omplexity in m = 1000 in Figure 1 is a result ofour generating strategy: n has an upper limit 1000, but m 
an ex
eed iton 200. Thus, in the 
ase of m2(1000; 1200℄ there is always n<m and asa result the system always has more than one solution: the more the dif-feren
e m�n is then a system is less 
onstrained the more solutions it has.8It is easy to see that two derivations Ak )+ Aj and Aj )+ " 
an be 
ombinedinto the derivation Ak )+ ".9M. Berkelaar, lp_solver, ftp://ftp.i
s.ele.tue.nl/pub/lp_solve/10Sometimes we had to stop the ILP solver be
ause it worked too long. ILP issatisfa
tory for very small dimensions like m 2 [1; 30℄ and its performan
e de
reasesrapidly (exponentially) with the growth of m.
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lusionWe gave several algorithms for solving spe
ial sub
lasses of non-negativelinear Diophantine systems. These sub
lasses belong to a 
lass of asso
i-ated with 
ontext-free grammars systems. The problem of solving thesesystems is redu
ed to 
omputing some derivations in generative gram-mars. This allows using the well-known parsing methods.The attra
tive property of our algorithms is their polynomial andpseudo-polynomial time 
omplexity. They are signifi
antly more effi
ientthan �universal� algorithms for solving arbitrary non-negative linear Dio-phantine systems and 
an be used even for very large systems.Referen
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