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Grammar-Based Algorithms for Solving Linear Diophantine Systems 531 IntrodutionLet Z be a set of integers and Z+ be a set of non-negative integers. Asystem of n non-negative linear Diophantine equations (NLDE) in m un-knowns an be written as follows:Ax = b ; (1.1)where A is an integer (n �m)-matrix, x 2 Zm+ is a vetor of unknowns,and b is a vetor in Zn. Solutions of system (1.1) is restrited with non-negative integer vetors that is a reason for the letter �N� to be in theintrodued notation �NLDE�.As a rule, a omplete solution for system (1.1) means searhing itsHilbert basis�a pair (N ;H) of finite sets suh that a set S of all solutionsan be represented as (see [1, 2℄)S = N +H�;whereH� is a set of all non-negative linear ombinations of elements of H.In other words, any solution x 2 S an be expressed asx = h(0) + qXs=1 �sh(s) ; h(0) 2 N ; H = nh(1); h(2); : : : ; h(q)ofor arbitrary non-negative integers �s, s = 1; 2; : : : ; q. Elements of N areall minimal1 solutions of system (1.1). Elements of H are all minimalsolutions of the orresponding homogenous system:Ax = O : (1.2)A problem of finding any solution for system (1.1) is known to beNP-omplete [1℄. Searhing of the whole basis is even more omplex, be-ause the ardinality of the basis inreases exponentially with n, m andjj(A; b)jj, where jj(A; b)jj is a norm of oeffiients. The study of speiallasses of NLDE systems is therefore onentrated in onstruting algo-rithms dediated for these partiular lasses. An interesting ase is NLDEsystems assoiated with ontext-free (CF) grammars. They were firstlyintrodued by M. Filgueiras and A. Tom�as [3℄ (some partiular type ofthese systems).1A solution x is minimal if there is no other solution y suh that x � y (theomponent-wise partial order xi � yi, i = 1; 2; : : : ;m). It is easy to see that if x is notminimal then it an be deomposed as x = y + h, where h is a non-zero solution ofhomogenous system (1.2).



54 Dmitri G. KorzounIn this paper we introdue a lass of the assoiated NLDE system(ANLDE) in a more general form than in [3℄ and present new algorithmsfor solving some of its sublasses. These algorithms are haraterized withpolynomial or pseudo-polynomial time omplexity and are signifiantlymore effiient than existing �universal� algorithms for solving arbitraryNLDE systems.We use the terminology and notation of the formal languages theorysimilar to monographs of A. Aho and J. Ullman [4℄, and S. Sippu andE. Soisalon-Soininen [5℄. A CF-grammar G is defined as a quadruple(N;�; P; S), where N = fA1; A2; : : : ; Ang is a nonterminal alphabet, � =fa1; a2; : : : ; atg is a terminal alphabet, P = fr1; r2; : : : ; rmg is a set ofgrammar rules in the form ri = (Ak ! p) for some nonterminal Ak 2 Nand string p 2 (N [�)�, S is a start symbol. For the study a start symbolis not important and we denote a grammar as G = (N;�; P; �).The rest of the paper is organized as follows. In Setion 2 we introduea lass of ANLDE system, onsider its important sublasses and disusssome properties of these systems related to CF-grammars. Based on theseproperties we present in Setion 3 several new effiient algorithms forsearhing Hilbert basis of the systems belonging to the sublasses.2 Systems Assoiated with Context�FreeGrammarsIn this setion we introdue a wide lass of NLDE systems. The sys-tems are onstruted aording to a given CF-grammar and two arbitrarystrings over the grammar alphabet. The solutions of these systems arestrongly onneted with ertain derivations in the grammar and this prop-erty is intensively used to onstrut several solving algorithms presentedin Setion 3. The detailed theoretial bakground of the disussed issuesan be found in [6�9℄.2.1 ConstrutionLet G = (N;�; P; �) be a CF-grammar and strings w0; w00 2 (N [ �)�.One an onstrut the following NLDE system:8>><>>: Pi2HA xi + �A = nPi=1 iA xi + �A for all nonterminals A 2 NnPi=1 iA xi + �a = �a for all terminals a 2 � ; (2.1)



Grammar-Based Algorithms for Solving Linear Diophantine Systems 55where HA is a set2 of indies of those grammar rules whose left-hand sideis equal to the nonterminal A; the values �A and �a are the numbersof ourrenes in the string w0 respetively the nonterminal A and theterminal a; the values �A and �a are the same as �A and �a but in thestring w00; the values iA and ia are the numbers of ourrenes in aright-hand side of the rule ri respetively A and a.The system has m+ t equations�one for eah symbol (nonterminal orterminal) and n unknowns�one for eah grammar rule. Eah unknown xiis allowed to take non-negative integers only. This system is alled anassoiated NLDE system (ANLDE), and the orresponding grammar�agenerative grammar.Let a derivation w0 )+ w00 exist in G. We onsider a vetor � 2 Zn+suh that eah omponent �i is equal to the number of times the rule riis applied during the fixed derivation w0 )+ w00.Theorem 1 The vetor � is a solution of system (2.1).This fat3 is explained as follows. At the beginning of any suessfulderivation w0 )+ w00 there is �A ourrenes of eah nonterminal A,beause we start the derivation with the string w0. At the end it is equalto �A, beause we finish the derivation with the string w00. The sumPi2HA �i is the number of times the nonterminal A is expanded during thederivation, the seond sum nPi=1 iA�i is the number of times it is produed:eah expansion of A with a rule ri derements by one the number ofourrenes of A in the urrent sentential form and inrements by iBthe number of ourrenes of eah nonterminal B 2 N . Thus, there were�A nonterminals A in w0, then nPi=1 iA�i ourrenes of the nonterminalA had appeared and Pi2HA �i ourrenes simultaneously had disappeared,but at the end of the derivations �A ourrenes are preserved. This is areason for � to satisfy all nonterminal equations of the system. Similarly,the number of times a terminal ours in w00 is equal to a sum of thenumber of times it ours in w0 and the number of times it is produed4.2Formally HA = fi j ri = (A ! p)g, where ri is the ith grammar rule, A is aleft-hand side and p is a right-hand side of the rule.3See the proof in [6℄.4Terminals an not be expanded in ontrast to nonterminal symbols.



56 Dmitri G. Korzoun2.2 Sublasses of the Assoiated SystemsRestriting w0 and w00 one an derive some partiular sublasses ofANLDE systems (2.1). Let us introdue several of them.Derivation of a sentene starting from a nonterminalIn this ase the string w0 is a single nonterminal Ak, w00 is a sentene de-rived from Ak in G: w00 2 LG(Ak), where LG(Ak) is a set of all sententialforms of Ak in G, or in other words the language generated by Ak .8>>>>>><>>>>>>: Pi2HAk xi = nPi=1 iAk xk + 1 for the start symbol AkPi2HA xi = nPi=1 iA xk for all A 2 N n fAkgnPi=1 ka xi = �a for all a 2 � ; (2.2)The nonterminal Ak is onsidered as a start symbol of G. This sublassof ANLDE systems was introdued by M. Filgueiras and A. Tom�as [3℄.Derivation of empty string starting from a nonterminalA partiular ase of previous one when w0 = Ak, w00 = ". It is evidentthat there must be no terminal symbols in any derivation Ak )+ ".8>><>>: Pi2HAk xi = nPi=1 iAk xi + 1 for the start symbol AkPi2HA xi = nPi=1 iA xi for all A 2 N n fAkg ; (2.3)We denote suh a system as "-ANLDE system.Nonterminal�to�nonterminal derivationHere w0 = Ak, w00 = Aj . If k 6= j then ANLDE system has the form:8>>>>>>><>>>>>>>:
Pi2HAk xi = nPi=1 iAkxi + 1Pi2HAj xi + 1 = nPi=1 iAjxiPi2HA xi = nPi=1 iA xi for all A 2 N n fAk; Ajg ; (2.4)We denote suh a system as (A,B)-ANLDE system. In the ase of k = jthe system is homogenous:



Grammar-Based Algorithms for Solving Linear Diophantine Systems 57Xi2HA xi = nXi=1 iA xi for all A 2 N : (2.5)It is alled a homogenous ANLDE system.2.3 Solutions, derivations and ylesA yle is a derivation A )+ �A� for some strings �; � 2 (N [�)�. Ayle is empty if �� = ". A derivation � )+ � is minimal if it does notontain empty yles. An empty yle is minimal if it does not ontainanother empty yle.Theorem 1 states that for any derivation w0 )+ w00 there is the orre-sponding solution � of system (2.1). However there may exist suh solu-tions that orrespond to another derivation v0 )+ v00 or suh ones that donot orrespond to any suessful derivation in the generative grammar G.Moreover, it is possible that w00 is not derivable from w0 in G. The firstase appears beause the assoiated system does not ontain informationon the order of symbols in sentential forms. The reason of the seond aseis the existene of yles in the grammar.A minimal (basis) solution of ANLDE system does not always orre-spond to a standard derivation w0 )+ w00. For this reason we introdue ageneralized derivation as a set of standard derivations fw01 )+ w001 ; w02 )+w002 ; : : : ; w0l )+ w00l g suh that for eah grammar symbol X 2 N [ � theequalityo(X;w001w002 : : : w00l )� o(X;w01w02 : : : w0l) = o(X;w00)� o(X;w0)is satisfied, where o(X;w) is the number of ourrenes of the symbolX in the string w.It an be proved that any solution of ANLDE-system orresponds toa minimal generalized derivation plus a non-negative linear ombinationof all minimal empty yles of the grammar.Theorem 2 Any solution of ANLDE system (2.1) an be expressed as5:x = yw0)+w00 + y" ; (2.6)5The proof an be found in [6℄



58 Dmitri G. Korzounwhere yw0)+w00 is a solution omponent orresponding to a minimal gen-eralized derivation w0 )+ w00, y" is a omponent orresponding to amultiset6 of minimal empty yles.Theorem 2 redues a problem of solving ANLDE system to searh-ing some minimal derivations and empty yles in G. These minimalderivations form the set N of all minimal solutions of system (2.1), andthe minimal empty yles form the set H of all minimal solutions of thehomogenous system for (2.1).Example 1 Let G be a CF-grammar with N = fA1; A2g, � = ?, andP = f A1 ! A1A1A2 ; A1 ! A2A2 ; A2 ! A1A1A1A2 ; A2 ! " g.G and (A1; ") generate the "-ANLDE system:� x1 + x2 = 2x1 + 3x3 + 1x3 + x4 = x1 + 2x2 + x3 =) � x2 = x1 + 3x3 + 1x4 = x1 + 2x2The derivation A1 2) A2A2 3) A2A1A1A1A2 4) A2A1A1A1A1 4)A1A1A1A1 2;2;2=) +A2A2A2A2A2A2 4) A2A2A2A2A2 4;4;4;4=) +A2 4) "orresponds to the nonminimal solution x = (0; 4; 1; 8). It an bedeomposed as x = yA1)+" + y" = (0; 1; 0; 2) + (0; 3; 1; 6), whereyA1)+" orresponds to the minimal derivation A1 2) A2A2 4)A2 4) ", and y" orresponds to the minimal empty yle A2 3)A1A1A1A22;2;2=)+A2A2A2A2A2A2A24;4;4;4;4;4=)+A2 or the similar minimal emptyyle A1 2) A2A2 3) A1A1A1A2A2 2;2=)+A1A2A2A2A2A2A24;4;4;4;4;4=)+A1.The Hilbert basis is N = f(0; 1; 0; 2g and H = f(0; 3; 1; 6); (1; 1; 0; 3)g,where the minimal solution (1; 1; 0; 3) of the homogenous system orre-sponds to the minimal empty yle A1 1) A1A1A2 2) A1A2A2A2 4;4;4=)+A1.3 Solving the Assoiated SystemsA large number of various algorithms have been proposed by numerousauthors for solving linear Diophantine equations: G. Huet [10℄, M. Clausenand A. Fortenbaher [11℄, E. Contejean and H. Devie [12℄, A. Tom�asand M. Filgueiras [13℄, L. Pottier [14℄, A. Boudet and H. Comon [15℄,E. Domenjoud and A. Tom�as [2℄, E. Contejean [16℄, and F. Ajili andE. Contejean [17℄. The most of them solve homogenous systems, beauseany NLDE-system an be transformed into an equivalent homogenous6Multiset is a set in whih elements may be repeated.



Grammar-Based Algorithms for Solving Linear Diophantine Systems 59one. These algorithms are based on some enumeration methods and itmakes them appliable only if absolute values of oeffiients jj(A; b)jj anddimension n�m are small.In this setion we introdue several new effiient algorithms for solvingi) "-ANLDE systems (2.3), ii) (A,B)-ANLDE system (2.4), and iii) ho-mogenous ANLDE systems (2.5).3.1 Strings and vetors of Zn+t+ANLDE system (2.1) does not take into aount the order of symbols instrings involved in derivations. It means that there is no need to preservethe order during a derivation. As a result one an get more effiient waysto store strings over N [ �.Any string in (N [ �)� an be desribed with a vetor � 2 Zn+t+ . Eahomponent �l (l = 1; 2; : : : ; n+ t) is equal to the number of ourrenes ofeah symbol of N[� = fX1; X2; : : : ; Xn+tg in this string. As a result, thederivation w0 )+ w00 an be presented as a path in Zn+t+ . This desriptionis signifiantly more pratial than to store a string diretly as it an havean arbitrary length.Example 2 Let G be a CF-grammar from Example 1. It an be storedas the following matrix: 0BB� 1 2 11 0 22 3 12 0 0 1CCAThe derivation A1 2) A2A2 3) A2A1A1A1A2 4) A2A1A1A1A1 4)A1A1A1A1 2;2;2=)+A2A2A2A2A2A2 4) A2A2A2A2A2 4;4;4;4=)+A2 4) " an bepresented as the path in Z2+: (1; 0)! (0; 2)! (3; 2)! (4; 1)! (4; 0)!+(0; 6)! (0; 5)!+ (0; 1)! (0; 0).3.2 Algorithm for solving "-ANLDE systemsLet �k be a set of all minimal solutions of "-ANLDE system (2.3). In thisase any solution � 2 �k orresponds to a standard derivation Ak )+ ".The simplest elements of �k orresponds to one-step derivations aordingto a grammar rule Ak ! ", i.e. if there exists a rule ri = (Ak ! "), thena vetor �(k) = (0; : : : ; 0; 1; 0; : : : ; 0) 2 Zm is a solution (the only 1 is



60 Dmitri G. Korzounon the ith plae�the only appliation of the rule ri). To find all otherelements of �k one an use the well-known Dijkstra algorithm�a verysimilar algorithm is known to deide whether or not empty string " belongsto the language L(Ak), see [4, 5℄.Algorithm 1 sums up these ideas. It uses the following notations:p� is a set of all possible sums of p elements from � (these elements maybe repeated). Formally p� = f�i1+�i2+: : :+�ip j �i1 ; �i2 ; : : : ; �ip 2�g. For example, for p = 3 and � = f(1; 2; 0); (0; 0; 3)g the set p�is equal to f(3; 6; 0); (2; 4; 3); (1; 2; 6); (0; 0; 9)g.Algorithm 1 All minimal solutions of "-ANLDE system(for all nonterminal symbols Ak, k = 1; 2; : : : ; n)Require: Sets N and P ,N = fA1; A2; : : : ; Ang �nonterminal alphabet,P = fr1; r2; : : : ; rmg �grammar rules in the form r = (Ak ! p) 2 P ,(p is presented as (p1; p2; : : : ; pn) 2 Zn+).Ensure: Sets �k for eah k = 1; 2; : : : ; n.�k  ? k = 1; 2; : : : ; n; {At the beginning �k are empty sets}{Initialization of �k with the simplest empty rules Ak ! "}for all ri 2 P suh that ri = (Ak ! ") do�  (0; 0; : : : ; 1; : : : ; 0); {the only 1 is on the ith position}�k  �k [ f�g;end formodif_flag truewhile modif_flag= false do {Iteration of all �k}modif_flag falsefor all ri = (Ak ! p) 2 P doU  min (ei + p1�1 + p2�2 + : : :+ pn�n;�k);if U 6= ? thenmodif_flag true;�k  �k [ U ;end ifend forend while



Grammar-Based Algorithms for Solving Linear Diophantine Systems 61�0 +�00 is a set of all possible sums of an element form �0 and an elementfrom �00. Formally �0 + �00 = f�0 + �00 j �0 2 �0; �00 2 �00g.For example, for �0 = f(3; 6; 0); (2; 4; 3); (1; 2; 6); (0; 0; 9)g and �00 =f(0; 5; 2)g the sum �0 +�00 = f(3; 11; 2); (2; 9; 5); (1; 7; 8); (0; 5; 11)g.min(�0;�) is a set of all minimal elements from �0 [ �. For-mally min(�0;�) = f� 2 �0 [ � j ��0 2 �0 [ �; �0 � �; �0 6= �g.For example, for �0 = f (1; 2; 0); (3; 0; 1); (0; 0; 2) g and � =f (0; 2; 0); (3; 0; 1) g the set min(�0;�) ontains the only vetor(0; 0; 2).At eah step of the iteration the algorithm onstruts a set U =min (ei + p1�1 + p2�2 + : : :+ pn�n;�k). It means that it tries to usea rule ri = (Ak ! p) as the first rule of a derivation Ak ) ". The appli-ation of the rule results in a sentential form that is equal to its right-handside�there are p1 oupanies of A1, p2 oupanies of A2, . . . , and pnoupanies of An. Thus, to redue it to " one should use p1 derivationsA1 )+ ", p2 derivations A2 )+ ", . . . , and pn derivations An )+ ".Algorithms searhing the Hilbert basis an not be onsidered as NPproblems, beause in general their output (N ;H) is sized exponentially onthe input dimensions n�m. Thus we introdue an additional parameterM that limits the size of the output and it will be used to desribe theomplexity among with standard n andm. We all the omplexity polyno-mial if it is O(n�m�M) for some �; �;  � 0. The omplexity is pseudo-polynomial if a bound on absolute values of input (jj(A; b)jj � onst)makes it polynomial.The total time omplexity of Algorithm 1 is determined by the itera-tion stage (Dijkstra algorithm). Let the ardinality of eah �k be limitedwith a onstant M : j�kj � M for all k = 1; 2; : : : n. In the worst ase ateah iteration there is only one element added to some �k, i.e. jU j = 1.Thus, the number of the iterations is limited by Mnm.The omputation of U onsumes additional time. Let N = maxfpj jri = (Ak ! p) 2 Rg. Any set pj�k ontains no more then CNM+N�1elements. Therefore jp1�1 + p2�2 + : : :+ pn�nj � �CNM+N�1�n. Onthis assumption the omplexity of the iteration stage is equal to(Mnm) �CNM+N�1�nm. Fortunately, it is possible to redue the omplex-ity of U omputation, onstruting only those elements that are reallyneessary for �k and not to spend time for extra solutions (nonmini-



62 Dmitri G. Korzounmal or previously found). It means U an be onstruted in time Mnm.Therefore, we haveTheorem 3 Sets �k an be onstruted by Algorithm 1 in time7mn+ (Mnm)(Mnm) = O(M2n2m2) = O(M2m4) :The theorem gives an upper bound of the time omplexity of Algo-rithm 1. In pratie, this algorithm works faster, beause the number ofthe iterations and the ardinality of U ompensate eah other.The most important disadvantage of the algorithm is that it solves n"-ANLDE systems simultaneously, but it is not likely to be a satisfatoryway to searh �k separately.3.3 Algorithm for solving (A,B)-ANLDE systemsFor solving the (Ak,Aj)-ANLDE system one an use the sets �k on-struted by Algorithm 1. Let Ckj be a set of all minimal solutions of the(Ak,Aj)-ANLDE system. Let ri = (Ak ! p) be a grammar rule. Thesimplest solutions orresponding to Ak )+ Aj belong to the set:p1�1 + p2�2 + : : :+ pj�1�j�1 + (pj � 1)�j + pj+1�j+1 + : : :+ pn�n :It means that the algorithm tries to use the rule ri as the first rule of aderivation. Reduing the sentential form p to Aj requires p1 derivationsA1 )+ ", p2 derivations A2 )+ ", . . . , pj � 1 derivations Aj )+ ", . . . ,and pn derivations An )+ ", This is performed in the initialization stageof Algorithm 2.Unfortunately, this does not result in all possible minimal solutions,but it is a omplete base for the next stage that iteratively onstruts theremaining solutions; if there are two derivations Ak )+ As and As )+Aj then they an be ombined in the derivation Ak )+ Aj .Let M be a onstant limiting the ardinality of all sets �k and Ckj .The initialization stage of Algorithm 2 works in time Mnm2. The itera-tion stage (transitive losure) works in time n3M3m.Theorem 4 Sets Ckj an be onstruted by Algorithm 2 in timeMnm2 +M3n3m = O(M3m4) :7For any ANLDE system n � m.



Grammar-Based Algorithms for Solving Linear Diophantine Systems 63Algorithm 2 All minimal solutions of (Ak,Aj)-ANLDE systemAk; Aj 2 N for all k; j = 1; 2; : : : ; nRequire: Sets N , P and �k,N = fA1; A2; : : : ; Ang is a nonterminal alphabet of the grammar,P = fr1; r2; : : : ; rmg is the grammar rules in the form r = (Ak!p) 2 P ,�k is the set of all minimal solutions of "-ANLDE system for the non-terminal Ak 2 N , k; j = 1; 2; : : : ; n.Ensure: Sets Ckj for all k; j = 1; 2; : : : ; n.Ckj  ? k; j = 1; 2; : : : ; n; {At the beginning Ckj are empty sets}for all ri = (Ak ! p) 2 P do {Initialization of the sets Ckj}for j = 1 to n doif pj > 0 thenU  min�ei + p1�1 + p2�2 + : : :+ pj�1�j�1 + (pj � 1)�j++pj+1�j+1 + : : :+ pn�n; Ckj�;Ckj  Ckj [ U ;end ifend forend forfor s = 1 to n do {Transitive losure of the sets Ckj}for k = 1 to n, k 6= s dofor j = 1 to n, j 6= s doU  min (Cks + Csj ; Ckj);Ckj  Ckj [ U ;end forend forend forThis algorithm an be used for solving the most important ANLDEsublass�homogenous ANLDE. In this ase nSk=1Ckk is a set of all minimalsolutions of homogenous ANLDE system (2.5) (all minimal empty yles).Algorithm 2 simultaneously onstruts all sets Ckj . However, thereis an algorithm based on Algorithm 1 that simultaneously onstruts



64 Dmitri G. Korzounall �l and Ckj for fixed k and j. This algorithm uses a fat that8(kj) + �(j) = �(k), where (kj) 2 Ckj , �(j) 2 �j , and �(k) orrespondsto Ak )+ ". We omit to present this algorithm in the paper beauseits understanding requires additional theoretial bakground. This algo-rithm is more effiient than Algorithm 2 both in time and spae, and itstheoretial time omplexity is O(M2m4).3.4 TestsWe have tested the algorithms on speially generated homogenousANLDE systems. The dimensions of the generated systems were in range:n 2 [1; 1000℄, m 2 [n; n+ 200℄, pj 2 [0; 500℄. The systems were generatedin suh a way that eah of them has at least one solution but not morethan 200. Figures 1 and 2 shows the results on 7267 sample.To test the implementation we use an integer linear programmingsolver9. It an find only one solution in aordane with some ost fun-tion. For eah ANLDE system we run our algorithm to onstrut H, thenrun the ILP solver several times and tested that the found solution ouldbe represented with the Hilbert basis. The ILP solver used signifiantlymore time than our grammar-based algorithm�several hours or days10,but our algorithm nearly always worked in less than a minute.The experiment results approve nonlinear inreasing of the omplexity(see Figure 1). In Figure 2 we an see that the omplexity is approxi-mately linear if one onsiders it as a funtion of the number of minimalsolutions. It allows to onlude that the algorithm works approximatelyin time �(Mm2) in the average ase.The angle of the omplexity in m = 1000 in Figure 1 is a result ofour generating strategy: n has an upper limit 1000, but m an exeed iton 200. Thus, in the ase of m2(1000; 1200℄ there is always n<m and asa result the system always has more than one solution: the more the dif-ferene m�n is then a system is less onstrained the more solutions it has.8It is easy to see that two derivations Ak )+ Aj and Aj )+ " an be ombinedinto the derivation Ak )+ ".9M. Berkelaar, lp_solver, ftp://ftp.is.ele.tue.nl/pub/lp_solve/10Sometimes we had to stop the ILP solver beause it worked too long. ILP issatisfatory for very small dimensions like m 2 [1; 30℄ and its performane dereasesrapidly (exponentially) with the growth of m.
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66 Dmitri G. Korzoun4 ConlusionWe gave several algorithms for solving speial sublasses of non-negativelinear Diophantine systems. These sublasses belong to a lass of assoi-ated with ontext-free grammars systems. The problem of solving thesesystems is redued to omputing some derivations in generative gram-mars. This allows using the well-known parsing methods.The attrative property of our algorithms is their polynomial andpseudo-polynomial time omplexity. They are signifiantly more effiientthan �universal� algorithms for solving arbitrary non-negative linear Dio-phantine systems and an be used even for very large systems.Referenes[1℄ Shrijver A., Theory of Linear and Integer Programming. John Wil-ley & Sons Ltd., 1986.[2℄ Domenjoud E., Tom�as A. From Elliott-MaMahon to an algorithmfor general onstraints on naturals. In U. Montanari, F. Rossi (eds.),Priniples and Pratie of Constraint Programming � CP'95. LetureNotes in Computer Siene 976. Springer-Verlag, 1995. pp. 18�35.[3℄ M. Filgueiras, A. Tom�as, Solving Linear Constraints on Finite Do-mains through Parsing. Pro. of EPTA'91, 1991. pp. 1�16.[4℄ A. Aho, J. Ullman, The Theory of Parsing, Translation and Com-piling. Volume I: Parsing. Prentie-Hall, In. 1972.[5℄ S. Sippu, E. Soisalon-Soininen, Parsing Theory. Volume I: Languagesand Parsing. EATCS Monographs on Theoretial Computer Siene,W. Brauer, G.Rozenberg, A. Salomaa (Eds.), Springer-Verlag, 1988.[6℄ I. A. Bogoiavlenski11, D. G. Korzoun, On Solutions of Linear Dio-phantine Equations System, Assoiated with a Context-Free Gram-mar. Transations of the University of Petrozavodsk on �Appliedmathematis and omputer siene�. Vol. 6. Petrozavodsk, 1998,pp. 79�94. (in Russian)[7℄ D. G. Korzoun, Solution of One Class of Linear Diophantine Equa-tions in Non-negative Integers through Parsing. Transations of theUniversity of Petrozavodsk on �Applied mathematis and omputersiene�. Vol. 7. Petrozavodsk, 1999, pp. 93�116. (in Russian)11The name �Yury A. Bogoyavlenskiy� was spelled as �Iouri A. Bogoiavlenski� inaordane with the old passport for travelling abroad, whih was renewed at 2000.
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