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Abstract

The need of automatic analysis methods is increasing rapidly in bio-
sciences, e.g. genetics. (Gene expression, i.e. the process by which
the DNA information is transmitted to a cell, is one of the most chal-
lenging research topics of the coming decades. Research on gene ex-
pression means finding out the instructions of regulation mechanisms
in cells. Data mining research develops methods for detecting regular-
ities in large amounts of data. A short overview of computer intensive
statistical methods, e.g. Monte Carlo, randomization and bootstrap, is
given. These methods are powerful tools for many application areas.
Their significance is still increasing, with the increasing performance of
computers. Finally, applying randomization and Monte Carlo-testing
to the analysis of a yeast gene expression and gene classification data is
illustrated.

Contents
1 Introduction .......... .0ttt innenennn 82
2 Genes—Basic Concepts ... ..ot v i ettt ananas 82
3 Gene exXpression . ..o v vt vttt ittt ettt 83
4 Data mining and computer-intensive
statistical methods ................ .. . 84
4.1 Computer-intensive statistical methods . ........... 84

5 Example: analysis of yeast genome expression data .. 86
5.1 Data ... ..o 86

© Marko Salmenkivi, 2000



82 Marko Salmenkivi

5.2 Distance measures . ......... ..., 87
5.3 Randomization of classification .................. 88
5.4 Results . ... ... .. .. ... 88
6 Conclusions . ........iiii ittt ineteesenenesan 92

1 Introduction

Recent advances in genetics have led to a situation where a large amount
of raw data is being produced using new techniques. In the near future
the trend seems to be even stronger; automatic analysis methods are thus
clearly becoming necessary. That means increasing the need for informa-
tion technology and the methods of computer science in biosciences. For
computer scientists, biosciences, e.g. genetics, mean a very interesting
and challenging application area. The new field bioinformatics applies
the methods of information science, computer science and computer engi-
neering to biological, especially genetic, data.

One of the most significant research areas during the coming decades
in the area of bioinformatics is the research on the regulatory mechanisms
of a cell.

In Section 2 some basic concepts of genetics and gene expression are
presented. Section 3 is a brief overview of data mining and in particular,
computer-intensive statistical methods, a group of methods useful in data
mining. Section 4 contains an example of research applying computer-
intensive statistical methods to a yeast gene expression and gene classifi-
cation data.

2 Genes—Basic Concepts

A gene is a unit of biological information. Human cells, for instance,
contain 100,000 genes in 23 chromosomes. The information here basically
means a set of instructions for synthesizing proteins at the correct time
and in the correct place.

The information in a gene is coded in a DNA molecule. The structure
of a DNA molecule is a double helix: two polynucleotide strands are
wrapped around each other. The strands are sequences of four different
bases: guanine, cytosine, adenine, thymine. Guanine and cytosine form
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one complementary pair, adenine and thymine another one. The parallel
strands always contain the complementary bases.

Triplets of bases (codons) encode amino acids. Because there are only
20 different amino acids, most of them are encoded by several triplets.
For example, triplets ACC, ACA and ACG all specify the amino acid
threonine [14].

The order of the bases of a genome is a significant research task. The
complete sequence of the human genome will be available in the near
future. The next step is to try to find out the role of each gene. The
functional analysis of the genome as a whole still remains the question,
which will probably take a long time to be answered exhaustively. The
functions of an individual gene and the whole genome are linked with gene
expression; knowing when and where a gene is expressed provides clues
as to its biological role [2].

3 Gene expression

Gene expression is the process by which the DNA information is trans-
mitted to a cell. It can be divided into two stages: transcription and
translation.

During transcription the strands of the DNA molecule separate from
each other. The complementary RNA molecule is constructed by attach-
ing the complementary bases to one of the separated strands. In this way
the DNA information is copied. The messenger RNA molecule transports
the information to a cell, where amino acids are produced according to the
information. This is the translation stage. Amino acids are still used as
elementary parts of polypeptide molecules in the synthesis process, which
is directed by RNA molecules.

All the genes of an individual are present in all the cells, but only
some of them are active, i.e. expressed. Expression patterns determine
the characteristics of a cell; if different genes are expressed in two cells,
the cells belong to different cell types. Abnormal expression patterns
may be associated with the development of tumors. For more detailed
information, see [14].

Microarray technique One of the advanced methods developed re-
cently for the analysis of gene expression is the microarray techni-
que [1, 3, 11]. Using this technique thousands of individual gene sequences
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can be printed in a high-density array on a glass microscope slide. The
relative intensities of indicator chemicals are measured at each array ele-
ment. In Finland the equipment and knowledge of the microarray tech-
nique are now available at Turku Centre for Biotechnology.

The investigation of gene expression means a very interesting and
challenging long-term research process; finding out the regulation mech-
anisms of the cells. The amount of expression data is increasing rapidly
and consequently automatic analysis methods are needed.

4 Data mining and computer-intensive
statistical methods

Data mining (or knowledge discovery from databases, as the area is also
called) aims at developing methods for discovering interesting regularities
and exceptions in large data collections. Data mining combines viewpoints
from database research, statistics and machine learning. This kind of
approach became significant at the early 1990’s when the amount of raw
data available in business, as well as scientific fields, was increasing very
quickly [9].

Data mining is in practice an iterative and gradually sharpening pro-
cess [8]. Data mining methods may produce a huge number of regularities
that still need to be postprocessed. Different kinds of methods are thus
applied at different stages of the process. Expert knowledge from the ap-
plication area is needed at all stages of the research process: when plan-
ning suitable approaches, directing the search of regularities, and when
interpreting the results.

In the following subsection a brief overview of a group of useful meth-
ods, called computer-intensive statistical methods, will be given.

4.1 Computer-intensive statistical methods

Increasing computational power has enabled new kind of approaches in
statistics. The computer-intensive methods are challenging the traditional
statistical methods and moving the emphasis in statistics by overcoming
some restrictions and difficulties of the traditional approaches.

In classic statistical inference the essential task is to derive the sam-
pling distribution for a statistic, and then to calculate the probability of
a sample statistic. This procedure has some severe problems. Firstly, for
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many statistics there are no analytical distributions. Secondly, sampling
distributions usually rely on restricting assumptions.

Computer-intensive statistical methods approach the problem from a
different view. They simulate the sampling process and do not demand
troubling assumptions about population distributions. An overview of
computer-intensive statistical methods is given in [4].

Monte Carlo simulation If a population distribution is known, Monte
Carlo simulation can be used to generate an empirical distribution for a
test statistic in the population. This is useful in many situations, where
the theoretical sampling distribution of a statistic is not known. In prac-
tice, Monte Carlo simulation typically proceeds as follows. A large num-
ber of sample sets from the population distribution are generated and the
desired test statistic is calculated from each set. Using these values, an
empirical distribution of the statistic is constructed. The original, real
value of the statistic is compared with the empirical distribution. Finally,
conclusions are drawn on the basis of the comparison.

Markov chain Monte Carlo (MCMC) Sampling from very complex
distributions is usually not possible by using classic simulation methods,
because independent values cannot be generated due to the high dimen-
sion and complex dependency structure of such distributions. Markov
chain Monte Carlo methods are powerful tools for generating samples
from distributions with even thousands of parameters dependent on each
other. MCMC methods are Monte Carlo methods, simulation being used
to construct an empirical approximation of the target distribution, as
described above [6].

Unlike in the case of the classic methods, successive values generated
by the MCMC methods are not independent. If the densities of all values,
or at least the proportions of the densities of all the pairs of values, can be
calculated, these proportions can be used to locally determine the “right”
acceptance-rejection-ratio for the generated values, i.e. the accepted val-
ues are generated according to the target distribution. Because of the
dependency of the values it is usually necessary to generate more values
than when using classic simulation methods. For theoretical understand-
ing of the MCMC methods, [12] gives a good overview.

MCMC methods have particularly significantly contributed to Baye-
sian statistics. Bayesian data analysis typically leads to complex integrals
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that cannot be solved analytically. Approximate integration using MCMC
methods is usually possible in this kind of problems [7, 13].

Bootstrap Sometimes no other kind of information but one sample from
a population may be available. If the sample is representative of the whole
population, it is still possible to draw conclusions about the population
parameters using bootstrap methods combined with Monte Carlo simula-
tion.

Bootstrap methods are based on resampling from the available sample.
Values from the sample are drawn using replacement as if the sample
values were from the real population.

If the sample is representative of the population, using bootstrap meth-
ods gives almost as good results as the classic approaches, with some
exceptions [5].

Randomization Unlike the bootstrap methods, randomization tests
cannot be used to draw any conclusions about the populations behind
the samples. Still they are very useful in many situations, where testing
hypothesis about samples instead of populations is sufficient. A typical
randomization procedure is described in the following section.

5 Example: analysis of yeast genome
expression data

In this section an example of applying Monte Carlo simulation and ran-
domization to a yeast genome expression data is given.

Two kinds of data were used: a functional classification of the genes of
the yeast Saccharomyces cerevisia and a data set containing expression
levels of the yeast genome resulted from a trial described below. The goal
of the research was to consider the relevance of the classification in the
light of this particular expression data.

In the following the data sets and the research process from a method-
ological point of view are described. The results and their biological in-
terpretations are mostly passed.

5.1 Data

Expression data The data set was first introduced by [2] and it is
publicly available. The data contains expression levels of 6,154 genes,
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i.e. almost the whole genome, of the yeast Saccharomyces cerevisia. The
relative changes of the indicator chemicals were measured at seven time
points with two hour intervals during a diauxic shift, that is, switch from
anaerobic (fermentation) to aerobic metabolism (respiration). The mi-
croarray technique was used in producing the data.

Yeast genome classification data A functional classification of the
yeast genes was received from Munich Information Center for Pro-
tein Sequences [10]. The classification is hierarchical, consisting of 14
main classes (e.g. Metabolism, Energy, Transcription, Protein synthesis,
Transport facilitation) and several levels of subclasses. An individual gene
can belong to several classes. There are more than 2,500 genes that are
still unclassified or of which classification is not clear-cut.

5.2 Distance measures

Distance measures between two profiles and between two classes of genes
are needed to allow comparison between expression profiles and between
classes.

Let z; = 2;(0),...,z;(k) and y; = y;(0),...,y;(k) be time series (ex-
pression profiles of two genes). The distance d between z; and y; was
defined as the sum of the euclidean distances at each time point:

k
dwiyy) = 3 lalt) — g (OP -
t=0

For comparison of the classes in respect to the expression, a distance
measure is also needed between two classes.

Let ¢ = {x1,...,z,} and ca = {y1,...,ym} be clusters of time series.

The distance djpter between two classes ¢; and ¢y (intercluster dis-
tance) was defined as the sum of distances between all the profile pairs
divided by the number of the pairs:

dinter(clacQ) = ! sz(xlwyj)

n-m

i=1 j=1
and tightness d;n¢rq Of a class ¢; (intracluster distance), respectively:

dintra(cl) = % ZZd(fL’z,LBJ) .

i=1 j=1
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5.3 Randomization of classification

The relevance of classification was investigated by randomizing the classes
according to the following procedure.

First, distances were calculated from the data between all the sub-
classes. The next stage was the randomization: as many genes were
picked up randomly into each class as there were in the original classifi-
cation. The randomization procedure was repeated 1,000 times and the
distances were computed for each randomization. The final stage was
the Monte Carlo testing; the values computed from the real classification
were compared with the empirical distributions of the distance values
calculated from the random classifications.

5.4 Results

Next some preliminary results of the analysis are given to illustrate the
method used.

The empirical distributions of the intracluster distances for the sub-
classes 5 (Fermentation) and 8 (Oxidation of fatty acids) of the main
class Energy, and the corresponding 95% confidence intervals are shown
in Figure 1. The corresponding values calculated according to the real
classification data are indicated by the points on the x-axes.

The results indicate that subclasses 5 and 8 are significantly tight. On
the other hand these classes are also close to each other, the empirical dis-
tribution and the data value for the intercluster distance of the subclasses
being shown in Figure 2.

For comparison the distributions of the intracluster distance of sub-
class 1 and the intercluster distance of subclasses 1 and 5 (Fig. 3) are
shown. Here the distance values calculated from the data do not signifi-
cantly deviate from the random values, i.e. the distributions of the values
computed on the basis of the random classifications.

It is important to notice that discovering statistical significance does
not straightforwardly guarantee the existence of biological significance.
Hence, experts on genetics are necessarily needed when interpreting the
results. Because the aim here is to illustrate the method, the question of
the biological importance of the given results is ignored.
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6 Conclusions

Co-operation of experts in computer science and biosciences is needed as
the amount of data in biosciences is significantly increasing due to new
research techniques. The process of decoding and making use of genetic
information code (gene expression) is one of the most fascinating and
demanding future challenges and in the future a huge amount of raw data
from the area will be available.

Data mining is an area of computer science playing an essential role
in the development of methods for these application areas. Computer-
intensive statistical methods provide a powerful set of tools for the modern
data analysis; they can avoid some crucial problems of the traditional
statistical inference by simulating the sampling process.

The example research process on the relevance of a yeast functional
classification in respect to a yeast genome expression data set illustrates
how randomization and Monte Carlo methods can be applied. Empirical
distributions for the interesting statistics can be generated and used to test
the significance of the values from the data without assumptions about
the population distributions. Statistical significance does not, however,
guarantee biological significance. Hence, expert knowledge is needed to
interpret the results.
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