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82 Marko Salmenkivi5.2 Distane measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.3 Randomization of lassifiation . . . . . . . . . . . . . . . . . . 885.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 IntrodutionReent advanes in genetis have led to a situation where a large amountof raw data is being produed using new tehniques. In the near futurethe trend seems to be even stronger; automati analysis methods are thuslearly beoming neessary. That means inreasing the need for informa-tion tehnology and the methods of omputer siene in biosienes. Foromputer sientists, biosienes, e.g. genetis, mean a very interestingand hallenging appliation area. The new field bioinformatis appliesthe methods of information siene, omputer siene and omputer engi-neering to biologial, espeially geneti, data.One of the most signifiant researh areas during the oming deadesin the area of bioinformatis is the researh on the regulatory mehanismsof a ell.In Setion 2 some basi onepts of genetis and gene expression arepresented. Setion 3 is a brief overview of data mining and in partiular,omputer-intensive statistial methods, a group of methods useful in datamining. Setion 4 ontains an example of researh applying omputer-intensive statistial methods to a yeast gene expression and gene lassifi-ation data.2 Genes�Basi ConeptsA gene is a unit of biologial information. Human ells, for instane,ontain 100,000 genes in 23 hromosomes. The information here basiallymeans a set of instrutions for synthesizing proteins at the orret timeand in the orret plae.The information in a gene is oded in a DNA moleule. The strutureof a DNA moleule is a double helix: two polynuleotide strands arewrapped around eah other. The strands are sequenes of four differentbases: guanine, ytosine, adenine, thymine. Guanine and ytosine form



Gene Expression�a New Challenge for Data Mining 83one omplementary pair, adenine and thymine another one. The parallelstrands always ontain the omplementary bases.Triplets of bases (odons) enode amino aids. Beause there are only20 different amino aids, most of them are enoded by several triplets.For example, triplets ACC, ACA and ACG all speify the amino aidthreonine [14℄.The order of the bases of a genome is a signifiant researh task. Theomplete sequene of the human genome will be available in the nearfuture. The next step is to try to find out the role of eah gene. Thefuntional analysis of the genome as a whole still remains the question,whih will probably take a long time to be answered exhaustively. Thefuntions of an individual gene and the whole genome are linked with geneexpression; knowing when and where a gene is expressed provides luesas to its biologial role [2℄.3 Gene expressionGene expression is the proess by whih the DNA information is trans-mitted to a ell. It an be divided into two stages: transription andtranslation.During transription the strands of the DNA moleule separate fromeah other. The omplementary RNA moleule is onstruted by attah-ing the omplementary bases to one of the separated strands. In this waythe DNA information is opied. The messenger RNA moleule transportsthe information to a ell, where amino aids are produed aording to theinformation. This is the translation stage. Amino aids are still used aselementary parts of polypeptide moleules in the synthesis proess, whihis direted by RNA moleules.All the genes of an individual are present in all the ells, but onlysome of them are ative, i.e. expressed. Expression patterns determinethe harateristis of a ell; if different genes are expressed in two ells,the ells belong to different ell types. Abnormal expression patternsmay be assoiated with the development of tumors. For more detailedinformation, see [14℄.Miroarray tehnique One of the advaned methods developed re-ently for the analysis of gene expression is the miroarray tehni-que [1, 3, 11℄. Using this tehnique thousands of individual gene sequenes



84 Marko Salmenkivian be printed in a high-density array on a glass mirosope slide. Therelative intensities of indiator hemials are measured at eah array ele-ment. In Finland the equipment and knowledge of the miroarray teh-nique are now available at Turku Centre for Biotehnology.The investigation of gene expression means a very interesting andhallenging long-term researh proess; finding out the regulation meh-anisms of the ells. The amount of expression data is inreasing rapidlyand onsequently automati analysis methods are needed.4 Data mining and omputer-intensivestatistial methodsData mining (or knowledge disovery from databases, as the area is alsoalled) aims at developing methods for disovering interesting regularitiesand exeptions in large data olletions. Data mining ombines viewpointsfrom database researh, statistis and mahine learning. This kind ofapproah beame signifiant at the early 1990's when the amount of rawdata available in business, as well as sientifi fields, was inreasing veryquikly [9℄.Data mining is in pratie an iterative and gradually sharpening pro-ess [8℄. Data mining methods may produe a huge number of regularitiesthat still need to be postproessed. Different kinds of methods are thusapplied at different stages of the proess. Expert knowledge from the ap-pliation area is needed at all stages of the researh proess: when plan-ning suitable approahes, direting the searh of regularities, and wheninterpreting the results.In the following subsetion a brief overview of a group of useful meth-ods, alled omputer-intensive statistial methods, will be given.4.1 Computer-intensive statistial methodsInreasing omputational power has enabled new kind of approahes instatistis. The omputer-intensive methods are hallenging the traditionalstatistial methods and moving the emphasis in statistis by overomingsome restritions and diffiulties of the traditional approahes.In lassi statistial inferene the essential task is to derive the sam-pling distribution for a statisti, and then to alulate the probability ofa sample statisti. This proedure has some severe problems. Firstly, for



Gene Expression�a New Challenge for Data Mining 85many statistis there are no analytial distributions. Seondly, samplingdistributions usually rely on restriting assumptions.Computer-intensive statistial methods approah the problem from adifferent view. They simulate the sampling proess and do not demandtroubling assumptions about population distributions. An overview ofomputer-intensive statistial methods is given in [4℄.Monte Carlo simulation If a population distribution is known, MonteCarlo simulation an be used to generate an empirial distribution for atest statisti in the population. This is useful in many situations, wherethe theoretial sampling distribution of a statisti is not known. In pra-tie, Monte Carlo simulation typially proeeds as follows. A large num-ber of sample sets from the population distribution are generated and thedesired test statisti is alulated from eah set. Using these values, anempirial distribution of the statisti is onstruted. The original, realvalue of the statisti is ompared with the empirial distribution. Finally,onlusions are drawn on the basis of the omparison.Markov hain Monte Carlo (MCMC) Sampling from very omplexdistributions is usually not possible by using lassi simulation methods,beause independent values annot be generated due to the high dimen-sion and omplex dependeny struture of suh distributions. Markovhain Monte Carlo methods are powerful tools for generating samplesfrom distributions with even thousands of parameters dependent on eahother. MCMC methods are Monte Carlo methods, simulation being usedto onstrut an empirial approximation of the target distribution, asdesribed above [6℄.Unlike in the ase of the lassi methods, suessive values generatedby the MCMC methods are not independent. If the densities of all values,or at least the proportions of the densities of all the pairs of values, an bealulated, these proportions an be used to loally determine the �right�aeptane-rejetion-ratio for the generated values, i.e. the aepted val-ues are generated aording to the target distribution. Beause of thedependeny of the values it is usually neessary to generate more valuesthan when using lassi simulation methods. For theoretial understand-ing of the MCMC methods, [12℄ gives a good overview.MCMC methods have partiularly signifiantly ontributed to Baye-sian statistis. Bayesian data analysis typially leads to omplex integrals



86 Marko Salmenkivithat annot be solved analytially. Approximate integration using MCMCmethods is usually possible in this kind of problems [7, 13℄.Bootstrap Sometimes no other kind of information but one sample froma population may be available. If the sample is representative of the wholepopulation, it is still possible to draw onlusions about the populationparameters using bootstrap methods ombined with Monte Carlo simula-tion.Bootstrap methods are based on resampling from the available sample.Values from the sample are drawn using replaement as if the samplevalues were from the real population.If the sample is representative of the population, using bootstrap meth-ods gives almost as good results as the lassi approahes, with someexeptions [5℄.Randomization Unlike the bootstrap methods, randomization testsannot be used to draw any onlusions about the populations behindthe samples. Still they are very useful in many situations, where testinghypothesis about samples instead of populations is suffiient. A typialrandomization proedure is desribed in the following setion.5 Example: analysis of yeast genomeexpression dataIn this setion an example of applying Monte Carlo simulation and ran-domization to a yeast genome expression data is given.Two kinds of data were used: a funtional lassifiation of the genes ofthe yeast Saharomyes erevisia and a data set ontaining expressionlevels of the yeast genome resulted from a trial desribed below. The goalof the researh was to onsider the relevane of the lassifiation in thelight of this partiular expression data.In the following the data sets and the researh proess from a method-ologial point of view are desribed. The results and their biologial in-terpretations are mostly passed.5.1 DataExpression data The data set was first introdued by [2℄ and it ispublily available. The data ontains expression levels of 6,154 genes,



Gene Expression�a New Challenge for Data Mining 87i.e. almost the whole genome, of the yeast Saharomyes erevisia. Therelative hanges of the indiator hemials were measured at seven timepoints with two hour intervals during a diauxi shift, that is, swith fromanaerobi (fermentation) to aerobi metabolism (respiration). The mi-roarray tehnique was used in produing the data.Yeast genome lassifiation data A funtional lassifiation of theyeast genes was reeived from Munih Information Center for Pro-tein Sequenes [10℄. The lassifiation is hierarhial, onsisting of 14main lasses (e.g. Metabolism, Energy, Transription, Protein synthesis,Transport failitation) and several levels of sublasses. An individual genean belong to several lasses. There are more than 2,500 genes that arestill unlassified or of whih lassifiation is not lear-ut.5.2 Distane measuresDistane measures between two profiles and between two lasses of genesare needed to allow omparison between expression profiles and betweenlasses.Let xi = xi(0); : : : ; xi(k) and yj = yj(0); : : : ; yj(k) be time series (ex-pression profiles of two genes). The distane d between xi and yj wasdefined as the sum of the eulidean distanes at eah time point:d(xi; yj) = kXt=0 jxi(t)� yj(t)j2 :For omparison of the lasses in respet to the expression, a distanemeasure is also needed between two lasses.Let 1 = fx1; : : : ; xng and 2 = fy1; : : : ; ymg be lusters of time series.The distane dinter between two lasses 1 and 2 (interluster dis-tane) was defined as the sum of distanes between all the profile pairsdivided by the number of the pairs:dinter(1; 2) = 1n �m nXi=1 mXj=1 d(xi; ; yj)and tightness dintra of a lass 1 (intraluster distane), respetively:dintra(1) = 1n2 nXi=1 nXj=1 d(xi; xj) :



88 Marko Salmenkivi5.3 Randomization of lassifiationThe relevane of lassifiation was investigated by randomizing the lassesaording to the following proedure.First, distanes were alulated from the data between all the sub-lasses. The next stage was the randomization: as many genes werepiked up randomly into eah lass as there were in the original lassifi-ation. The randomization proedure was repeated 1,000 times and thedistanes were omputed for eah randomization. The final stage wasthe Monte Carlo testing; the values omputed from the real lassifiationwere ompared with the empirial distributions of the distane valuesalulated from the random lassifiations.5.4 ResultsNext some preliminary results of the analysis are given to illustrate themethod used.The empirial distributions of the intraluster distanes for the sub-lasses 5 (Fermentation) and 8 (Oxidation of fatty aids) of the mainlass Energy, and the orresponding 95% onfidene intervals are shownin Figure 1. The orresponding values alulated aording to the reallassifiation data are indiated by the points on the x-axes.The results indiate that sublasses 5 and 8 are signifiantly tight. Onthe other hand these lasses are also lose to eah other, the empirial dis-tribution and the data value for the interluster distane of the sublassesbeing shown in Figure 2.For omparison the distributions of the intraluster distane of sub-lass 1 and the interluster distane of sublasses 1 and 5 (Fig. 3) areshown. Here the distane values alulated from the data do not signifi-antly deviate from the random values, i.e. the distributions of the valuesomputed on the basis of the random lassifiations.It is important to notie that disovering statistial signifiane doesnot straightforwardly guarantee the existene of biologial signifiane.Hene, experts on genetis are neessarily needed when interpreting theresults. Beause the aim here is to illustrate the method, the question ofthe biologial importane of the given results is ignored.
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Figure 1: Empirial distributions of the intraluster distanes: sublasses 5 (left) and 8 (right)
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Figure 2: Empirial distribution of the interluster distane between sublasses 5 and 8
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Figure 3: Empirial distributions of the intraluster distane of sublass 1 (left) and interluster dis-tane between sublasses 1 and 5 (right)



92 Marko Salmenkivi6 ConlusionsCo-operation of experts in omputer siene and biosienes is needed asthe amount of data in biosienes is signifiantly inreasing due to newresearh tehniques. The proess of deoding and making use of genetiinformation ode (gene expression) is one of the most fasinating anddemanding future hallenges and in the future a huge amount of raw datafrom the area will be available.Data mining is an area of omputer siene playing an essential rolein the development of methods for these appliation areas. Computer-intensive statistial methods provide a powerful set of tools for the moderndata analysis; they an avoid some ruial problems of the traditionalstatistial inferene by simulating the sampling proess.The example researh proess on the relevane of a yeast funtionallassifiation in respet to a yeast genome expression data set illustrateshow randomization and Monte Carlo methods an be applied. Empirialdistributions for the interesting statistis an be generated and used to testthe signifiane of the values from the data without assumptions aboutthe population distributions. Statistial signifiane does not, however,guarantee biologial signifiane. Hene, expert knowledge is needed tointerpret the results.AknowledgementsI am grateful to Professor Heikki Mannila for the example in Setion 4.Most of the ideas presented were planned in o-operation with him.Referenes[1℄ P. O. Brown and D. Botstein, Exploring the new world of the genomewith DNA miroarrays. Nature Genetis, 21, pp. 33�37, 1999.[2℄ J. L. DeRisi, V. R. Iyer, and P. O. Brown, Exploring the Metaboliand Geneti Control of Gene Expression on a Genomi Sale. Si-ene, 278, pp. 680�686, 1997.
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