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tThe need of automati
 analysis methods is in
reasing rapidly in bio-s
ien
es, e.g. geneti
s. Gene expression, i.e. the pro
ess by whi
hthe DNA information is transmitted to a 
ell, is one of the most 
hal-lenging resear
h topi
s of the 
oming de
ades. Resear
h on gene ex-pression means finding out the instru
tions of regulation me
hanismsin 
ells. Data mining resear
h develops methods for dete
ting regular-ities in large amounts of data. A short overview of 
omputer intensivestatisti
al methods, e.g. Monte Carlo, randomization and bootstrap, isgiven. These methods are powerful tools for many appli
ation areas.Their signifi
an
e is still in
reasing, with the in
reasing performan
e of
omputers. Finally, applying randomization and Monte Carlo-testingto the analysis of a yeast gene expression and gene 
lassifi
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tionRe
ent advan
es in geneti
s have led to a situation where a large amountof raw data is being produ
ed using new te
hniques. In the near futurethe trend seems to be even stronger; automati
 analysis methods are thus
learly be
oming ne
essary. That means in
reasing the need for informa-tion te
hnology and the methods of 
omputer s
ien
e in bios
ien
es. For
omputer s
ientists, bios
ien
es, e.g. geneti
s, mean a very interestingand 
hallenging appli
ation area. The new field bioinformati
s appliesthe methods of information s
ien
e, 
omputer s
ien
e and 
omputer engi-neering to biologi
al, espe
ially geneti
, data.One of the most signifi
ant resear
h areas during the 
oming de
adesin the area of bioinformati
s is the resear
h on the regulatory me
hanismsof a 
ell.In Se
tion 2 some basi
 
on
epts of geneti
s and gene expression arepresented. Se
tion 3 is a brief overview of data mining and in parti
ular,
omputer-intensive statisti
al methods, a group of methods useful in datamining. Se
tion 4 
ontains an example of resear
h applying 
omputer-intensive statisti
al methods to a yeast gene expression and gene 
lassifi-
ation data.2 Genes�Basi
 Con
eptsA gene is a unit of biologi
al information. Human 
ells, for instan
e,
ontain 100,000 genes in 23 
hromosomes. The information here basi
allymeans a set of instru
tions for synthesizing proteins at the 
orre
t timeand in the 
orre
t pla
e.The information in a gene is 
oded in a DNA mole
ule. The stru
tureof a DNA mole
ule is a double helix: two polynu
leotide strands arewrapped around ea
h other. The strands are sequen
es of four differentbases: guanine, 
ytosine, adenine, thymine. Guanine and 
ytosine form
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omplementary pair, adenine and thymine another one. The parallelstrands always 
ontain the 
omplementary bases.Triplets of bases (
odons) en
ode amino a
ids. Be
ause there are only20 different amino a
ids, most of them are en
oded by several triplets.For example, triplets ACC, ACA and ACG all spe
ify the amino a
idthreonine [14℄.The order of the bases of a genome is a signifi
ant resear
h task. The
omplete sequen
e of the human genome will be available in the nearfuture. The next step is to try to find out the role of ea
h gene. Thefun
tional analysis of the genome as a whole still remains the question,whi
h will probably take a long time to be answered exhaustively. Thefun
tions of an individual gene and the whole genome are linked with geneexpression; knowing when and where a gene is expressed provides 
luesas to its biologi
al role [2℄.3 Gene expressionGene expression is the pro
ess by whi
h the DNA information is trans-mitted to a 
ell. It 
an be divided into two stages: trans
ription andtranslation.During trans
ription the strands of the DNA mole
ule separate fromea
h other. The 
omplementary RNA mole
ule is 
onstru
ted by atta
h-ing the 
omplementary bases to one of the separated strands. In this waythe DNA information is 
opied. The messenger RNA mole
ule transportsthe information to a 
ell, where amino a
ids are produ
ed a

ording to theinformation. This is the translation stage. Amino a
ids are still used aselementary parts of polypeptide mole
ules in the synthesis pro
ess, whi
his dire
ted by RNA mole
ules.All the genes of an individual are present in all the 
ells, but onlysome of them are a
tive, i.e. expressed. Expression patterns determinethe 
hara
teristi
s of a 
ell; if different genes are expressed in two 
ells,the 
ells belong to different 
ell types. Abnormal expression patternsmay be asso
iated with the development of tumors. For more detailedinformation, see [14℄.Mi
roarray te
hnique One of the advan
ed methods developed re-
ently for the analysis of gene expression is the mi
roarray te
hni-que [1, 3, 11℄. Using this te
hnique thousands of individual gene sequen
es
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an be printed in a high-density array on a glass mi
ros
ope slide. Therelative intensities of indi
ator 
hemi
als are measured at ea
h array ele-ment. In Finland the equipment and knowledge of the mi
roarray te
h-nique are now available at Turku Centre for Biote
hnology.The investigation of gene expression means a very interesting and
hallenging long-term resear
h pro
ess; finding out the regulation me
h-anisms of the 
ells. The amount of expression data is in
reasing rapidlyand 
onsequently automati
 analysis methods are needed.4 Data mining and 
omputer-intensivestatisti
al methodsData mining (or knowledge dis
overy from databases, as the area is also
alled) aims at developing methods for dis
overing interesting regularitiesand ex
eptions in large data 
olle
tions. Data mining 
ombines viewpointsfrom database resear
h, statisti
s and ma
hine learning. This kind ofapproa
h be
ame signifi
ant at the early 1990's when the amount of rawdata available in business, as well as s
ientifi
 fields, was in
reasing veryqui
kly [9℄.Data mining is in pra
ti
e an iterative and gradually sharpening pro-
ess [8℄. Data mining methods may produ
e a huge number of regularitiesthat still need to be postpro
essed. Different kinds of methods are thusapplied at different stages of the pro
ess. Expert knowledge from the ap-pli
ation area is needed at all stages of the resear
h pro
ess: when plan-ning suitable approa
hes, dire
ting the sear
h of regularities, and wheninterpreting the results.In the following subse
tion a brief overview of a group of useful meth-ods, 
alled 
omputer-intensive statisti
al methods, will be given.4.1 Computer-intensive statisti
al methodsIn
reasing 
omputational power has enabled new kind of approa
hes instatisti
s. The 
omputer-intensive methods are 
hallenging the traditionalstatisti
al methods and moving the emphasis in statisti
s by over
omingsome restri
tions and diffi
ulties of the traditional approa
hes.In 
lassi
 statisti
al inferen
e the essential task is to derive the sam-pling distribution for a statisti
, and then to 
al
ulate the probability ofa sample statisti
. This pro
edure has some severe problems. Firstly, for
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s there are no analyti
al distributions. Se
ondly, samplingdistributions usually rely on restri
ting assumptions.Computer-intensive statisti
al methods approa
h the problem from adifferent view. They simulate the sampling pro
ess and do not demandtroubling assumptions about population distributions. An overview of
omputer-intensive statisti
al methods is given in [4℄.Monte Carlo simulation If a population distribution is known, MonteCarlo simulation 
an be used to generate an empiri
al distribution for atest statisti
 in the population. This is useful in many situations, wherethe theoreti
al sampling distribution of a statisti
 is not known. In pra
-ti
e, Monte Carlo simulation typi
ally pro
eeds as follows. A large num-ber of sample sets from the population distribution are generated and thedesired test statisti
 is 
al
ulated from ea
h set. Using these values, anempiri
al distribution of the statisti
 is 
onstru
ted. The original, realvalue of the statisti
 is 
ompared with the empiri
al distribution. Finally,
on
lusions are drawn on the basis of the 
omparison.Markov 
hain Monte Carlo (MCMC) Sampling from very 
omplexdistributions is usually not possible by using 
lassi
 simulation methods,be
ause independent values 
annot be generated due to the high dimen-sion and 
omplex dependen
y stru
ture of su
h distributions. Markov
hain Monte Carlo methods are powerful tools for generating samplesfrom distributions with even thousands of parameters dependent on ea
hother. MCMC methods are Monte Carlo methods, simulation being usedto 
onstru
t an empiri
al approximation of the target distribution, asdes
ribed above [6℄.Unlike in the 
ase of the 
lassi
 methods, su

essive values generatedby the MCMC methods are not independent. If the densities of all values,or at least the proportions of the densities of all the pairs of values, 
an be
al
ulated, these proportions 
an be used to lo
ally determine the �right�a

eptan
e-reje
tion-ratio for the generated values, i.e. the a

epted val-ues are generated a

ording to the target distribution. Be
ause of thedependen
y of the values it is usually ne
essary to generate more valuesthan when using 
lassi
 simulation methods. For theoreti
al understand-ing of the MCMC methods, [12℄ gives a good overview.MCMC methods have parti
ularly signifi
antly 
ontributed to Baye-sian statisti
s. Bayesian data analysis typi
ally leads to 
omplex integrals
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annot be solved analyti
ally. Approximate integration using MCMCmethods is usually possible in this kind of problems [7, 13℄.Bootstrap Sometimes no other kind of information but one sample froma population may be available. If the sample is representative of the wholepopulation, it is still possible to draw 
on
lusions about the populationparameters using bootstrap methods 
ombined with Monte Carlo simula-tion.Bootstrap methods are based on resampling from the available sample.Values from the sample are drawn using repla
ement as if the samplevalues were from the real population.If the sample is representative of the population, using bootstrap meth-ods gives almost as good results as the 
lassi
 approa
hes, with someex
eptions [5℄.Randomization Unlike the bootstrap methods, randomization tests
annot be used to draw any 
on
lusions about the populations behindthe samples. Still they are very useful in many situations, where testinghypothesis about samples instead of populations is suffi
ient. A typi
alrandomization pro
edure is des
ribed in the following se
tion.5 Example: analysis of yeast genomeexpression dataIn this se
tion an example of applying Monte Carlo simulation and ran-domization to a yeast genome expression data is given.Two kinds of data were used: a fun
tional 
lassifi
ation of the genes ofthe yeast Sa

haromy
es 
erevisia and a data set 
ontaining expressionlevels of the yeast genome resulted from a trial des
ribed below. The goalof the resear
h was to 
onsider the relevan
e of the 
lassifi
ation in thelight of this parti
ular expression data.In the following the data sets and the resear
h pro
ess from a method-ologi
al point of view are des
ribed. The results and their biologi
al in-terpretations are mostly passed.5.1 DataExpression data The data set was first introdu
ed by [2℄ and it ispubli
ly available. The data 
ontains expression levels of 6,154 genes,
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haromy
es 
erevisia. Therelative 
hanges of the indi
ator 
hemi
als were measured at seven timepoints with two hour intervals during a diauxi
 shift, that is, swit
h fromanaerobi
 (fermentation) to aerobi
 metabolism (respiration). The mi-
roarray te
hnique was used in produ
ing the data.Yeast genome 
lassifi
ation data A fun
tional 
lassifi
ation of theyeast genes was re
eived from Muni
h Information Center for Pro-tein Sequen
es [10℄. The 
lassifi
ation is hierar
hi
al, 
onsisting of 14main 
lasses (e.g. Metabolism, Energy, Trans
ription, Protein synthesis,Transport fa
ilitation) and several levels of sub
lasses. An individual gene
an belong to several 
lasses. There are more than 2,500 genes that arestill un
lassified or of whi
h 
lassifi
ation is not 
lear-
ut.5.2 Distan
e measuresDistan
e measures between two profiles and between two 
lasses of genesare needed to allow 
omparison between expression profiles and between
lasses.Let xi = xi(0); : : : ; xi(k) and yj = yj(0); : : : ; yj(k) be time series (ex-pression profiles of two genes). The distan
e d between xi and yj wasdefined as the sum of the eu
lidean distan
es at ea
h time point:d(xi; yj) = kXt=0 jxi(t)� yj(t)j2 :For 
omparison of the 
lasses in respe
t to the expression, a distan
emeasure is also needed between two 
lasses.Let 
1 = fx1; : : : ; xng and 
2 = fy1; : : : ; ymg be 
lusters of time series.The distan
e dinter between two 
lasses 
1 and 
2 (inter
luster dis-tan
e) was defined as the sum of distan
es between all the profile pairsdivided by the number of the pairs:dinter(
1; 
2) = 1n �m nXi=1 mXj=1 d(xi; ; yj)and tightness dintra of a 
lass 
1 (intra
luster distan
e), respe
tively:dintra(
1) = 1n2 nXi=1 nXj=1 d(xi; xj) :
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lassifi
ationThe relevan
e of 
lassifi
ation was investigated by randomizing the 
lassesa

ording to the following pro
edure.First, distan
es were 
al
ulated from the data between all the sub-
lasses. The next stage was the randomization: as many genes werepi
ked up randomly into ea
h 
lass as there were in the original 
lassifi-
ation. The randomization pro
edure was repeated 1,000 times and thedistan
es were 
omputed for ea
h randomization. The final stage wasthe Monte Carlo testing; the values 
omputed from the real 
lassifi
ationwere 
ompared with the empiri
al distributions of the distan
e values
al
ulated from the random 
lassifi
ations.5.4 ResultsNext some preliminary results of the analysis are given to illustrate themethod used.The empiri
al distributions of the intra
luster distan
es for the sub-
lasses 5 (Fermentation) and 8 (Oxidation of fatty a
ids) of the main
lass Energy, and the 
orresponding 95% 
onfiden
e intervals are shownin Figure 1. The 
orresponding values 
al
ulated a

ording to the real
lassifi
ation data are indi
ated by the points on the x-axes.The results indi
ate that sub
lasses 5 and 8 are signifi
antly tight. Onthe other hand these 
lasses are also 
lose to ea
h other, the empiri
al dis-tribution and the data value for the inter
luster distan
e of the sub
lassesbeing shown in Figure 2.For 
omparison the distributions of the intra
luster distan
e of sub-
lass 1 and the inter
luster distan
e of sub
lasses 1 and 5 (Fig. 3) areshown. Here the distan
e values 
al
ulated from the data do not signifi-
antly deviate from the random values, i.e. the distributions of the values
omputed on the basis of the random 
lassifi
ations.It is important to noti
e that dis
overing statisti
al signifi
an
e doesnot straightforwardly guarantee the existen
e of biologi
al signifi
an
e.Hen
e, experts on geneti
s are ne
essarily needed when interpreting theresults. Be
ause the aim here is to illustrate the method, the question ofthe biologi
al importan
e of the given results is ignored.
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Figure 1: Empiri
al distributions of the intra
luster distan
es: sub
lasses 5 (left) and 8 (right)
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Figure 3: Empiri
al distributions of the intra
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e of sub
lass 1 (left) and inter
luster dis-tan
e between sub
lasses 1 and 5 (right)
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lusionsCo-operation of experts in 
omputer s
ien
e and bios
ien
es is needed asthe amount of data in bios
ien
es is signifi
antly in
reasing due to newresear
h te
hniques. The pro
ess of de
oding and making use of geneti
information 
ode (gene expression) is one of the most fas
inating anddemanding future 
hallenges and in the future a huge amount of raw datafrom the area will be available.Data mining is an area of 
omputer s
ien
e playing an essential rolein the development of methods for these appli
ation areas. Computer-intensive statisti
al methods provide a powerful set of tools for the moderndata analysis; they 
an avoid some 
ru
ial problems of the traditionalstatisti
al inferen
e by simulating the sampling pro
ess.The example resear
h pro
ess on the relevan
e of a yeast fun
tional
lassifi
ation in respe
t to a yeast genome expression data set illustrateshow randomization and Monte Carlo methods 
an be applied. Empiri
aldistributions for the interesting statisti
s 
an be generated and used to testthe signifi
an
e of the values from the data without assumptions aboutthe population distributions. Statisti
al signifi
an
e does not, however,guarantee biologi
al signifi
an
e. Hen
e, expert knowledge is needed tointerpret the results.A
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