FDPW’2000. Vol. 3. pp. 14-29

Document transformation
by tree transducers

BEila Kuikka, Paula Leinonen, and Prof. Martti Penttonen

Department of Computer Science and Applied Mathematics,
University of Kuopio

P.0.Box 1627 FIN-70211 Kuopio, Finland

E-mail: {kuikka, leinonen, penttonen}@cs.uku.fi

Abstract

We report a syntax-directed approach to creation and transformation
of structured documents. We assume that the documents to be handled
have a syntactically definable structure. Whatever is done with the
document, at creation, at later transformations or other reuses, it is
done in accordance with the grammatical structure. In this work we
focus at the transformation of documents from structure to another.
We show that in an important case, called local transformations, the
transformation can be performed by finite state tree transducers, and
suggest a system supporting this kind of transformations.

Contents
1 Introductionc.iiiiieetnnennnnenns 15
2 Grammars and transducers 0 000 e . 16
2.1 Contextfree grammars. 16
2.2 Tree transducers, 19
3 Hierarchic, local, and dense transformations 22
4 Document transformation system 25
4.1 Setup of the transformation task 25
4.2 Finding the label association 25
4.3 Finding node associations 26
4.4 Lazy vs eager transformation system 27
4.5 Expertsand novices L. 27
4.6 Implementation of the transformation system 28
B DISCUSSIOI + v v v vt vttt ot e s oo s oo oneassnsonsnses 28

© Eila Kuikka, Paula Leinonen, and Martti Penttonen, 2000

Document transformation by tree transducers 15

1 Introduction

Usually, when we write a text for professional reasons, like a report, the
text has some logical structure. We want to make the content of our text
understandable for the reader. There are many ways to externally express
the structure, like using the empty space, the size and type of the font
etc. It is usual in word processing to “decorate” the text with these exter-
nal methods, indirectly giving it some structure. In structured document
processing, on the contrary, the structure comes first and external form is
secondary. Structure and form may even be completely separated so that
a document with a structure marking does not say anything about the
form how the document should look like. Still it is possible to produce a
beautifully typeset document starting from a structured document, even
automatically, as soon as rules for associating form to structure are given.
It is even possible that different styles of typesetting can be applied to get
different forms of the same structured document. Even if these documents
look different, they have the same contents and the same structure ele-
ments expressed in the original structured document. Structure markup
brings some other advantages, too. Structure markups make possible to
filtering out parts of the document by structure information, instead of
mere linear string search. It also makes automatic changes in the structure
possible, see [5], e.g. It is the aim of this article to study, how structured
documents can be automatically transformed to other structure. Here we
try to report in a strict and concise form the work presented in [8, 6, 7].

In syntax-directed approach to structured document processing (see
Figure 1), the structure of the document is defined by a formal grammar,
called document type definition in SGML and XML culture [4]. When the
document is being written, the software forces, supports or checks that
the document indeed follows the structure defined by the grammar.

When an existing document is transformed to another structure, it is
assumed that the source document and the target document have much
in common. One cannot transform an almanac to “Don Quijote”. Most
of the content elements are common and there is some similarity in the
structure, even if some elements are missing in one of the documents and
the order of structure elements may change. It is likely that some human
interpretation is needed to tell the transformation system that “author”
required by the source grammar and “writer” of the target grammar prob-
ably mean the same.

16 Eila Kuikka, Paula Leinonen, and Martti Penttonen

human
interface

label
interface association association
target human
grammar interface

Figure 1: Architecture of a document creation/transformation system

A scheme of a document creation/transformation system is depicted
in Figure 1.

2 Grammars and transducers

Instead of XML notation we prefer using the plain grammar notation
here. In this section, two devices that form the basis of this work, are
presented: the grammar that is used to define a structure and to create a
document, and the tree transducer that is used to transform a document
with a structure to a document with another structure.

2.1 Context—free grammars

A context-free grammar is a quadruple G = (V,T, P,S), where V and T
are finite sets called nonterminals and terminals, S € V is the start symbol
and P is a finite set of rules of the form A - x, AeV,z € (VUT)*. In
particular, the empty string e is allowed as the right hand side of a rule.

A string uAv € (VUT)* derives directly to uzv, denote uAdv = uzwv, if
thereisarule A —» x € P. A string u derives to a string v, denote u =* v,
if there are strings u = ug, U1, ..., Uy such that u; — 1 = u; for all 2. In

Document transformation by tree transducers 17

other words, =* is the reflexive, transitive closure of =. If S = w, w is
called a sentential form of the grammar G. The language generated by G
is the set L(G) = {w|S = w,w € T*}.

To each derivation A =* w of G, a derivation tree is associated as
follows. A node labeled with A is the root of the derivation tree. If the
whole derivation is A = w; = ... > w; = w11 = ... = w and we
already have the derivation tree for A = w1 = ... = w;, it is extended
for the derivation A = wy = ... = w; = w;41 as follows. Let the direct
derivation step be w; = uBv = uyv = w;11, where B — y € P. Assume
that ¥ = yoy1...y;, where y, € V UT for all k. Then there are arcs
from the node labeled with B to new nodes labeled with yo,...,y; and
these nodes are called children of Y. We also use the term parent for the
inverse of child, descendant for the reflexive, transitive closure of child,
and ancestor for the reflexive, transitive closure of parent.

Example 1 Consider the grammar, whose start symbol is article, other
nonterminals are author, date, title, content, abstract, section,
heading, paragraph, itemlist, textpara, and item, the only terminal
is text, and the rules are

article -> author+ [date] title content
author -> text

date -> text

title -> text

content -> abstract sectiont
abstract -> text

section -> heading paragraph+
heading -> text

paragraph -> textpara
paragraph -> itemlist
itemlist -> itemt

textpara -> text

item -> text

In the rules some abbreviations is used. B+ means “any number of
B’s”, i.e. B+ behaves as if it were a nonterminal and there were rules
B+ — B B+ and B+ — B in the grammar. [B] means “zero or one B”
and it has the same effect as rules [B] — € and [B] — B. Figure 2 presents
a derivation tree generated by this grammar. Actually, the output of the

18 Eila Kuikka, Paula Leinonen, and Martti Penttonen

article
T
aut hor + [dat e] title cont ent
///\\\ ////ﬁ\\\\
aut hor aut hor + € t ext abstract section+
| |
t ext aut hor t ext section
/\
t ext headi ng par agr aph+
|
t ext par agr aph

t ext par a

t ext

Figure 2: A derivation tree generated by the grammar of example 1.

grammar is text text text text text text read at the leaves of the
derivation tree. Each text is a homogeneous content element of a docu-
ment. In word processing it is customary that different content elements
are laid out differently to express its role in the document, for example
the text below title is typeset with a big font. In structured document
processing, instead, we usually identify the document and its derivation
tree. Hence, we would rather say that

article(
author+(
author (text),
author (text)),
[date] (),
title(text),
content (
abstract (text),
section+(
section(
heading(text),
paragraph (
textpara(text)))))

is the document, without any layout.

Document transformation by tree transducers 19

Grammar is a finite device that is capable of producing an infinite
number of strings and derivation trees. If we consider a path from a leaf
to the root of the derivation tree, if the length is greater than the size of
the alphabet, a nonterminal A must appear twice on the path. Hence, the
derivation must be of the form S =* vAv =* urAyv =* uzwyv. The
subderivation A =* xAy is called a pumping factor and it can be applied
any number of times to get S =* uz‘wy’v, i > 0. Notice that i = 0
corresponds the case when the pumping factor is not applied at all. Thus,
a pumping factor can be eliminated.

Consider all possible derivation trees generated by a grammar G. If
in all derivation trees all pumping factors are eliminated, we get a finite
number of different trees (because the depth is bounded). We call these
trees elementary trees. By reverse argument, all derivation trees can be
constructed by adding pumping factors to these trees. Note also that we
can choose pumping factors so that in paths from leaf to root the same
nonterminal may occur only as the root node and the leaf node. Thus
also the number of pumping factors is finite. We state these facts as

Lemma 1 For any context-free grammar, aoll derivation trees can be rep-
resented as a composition of a finite set of elementary trees and a finite
set of pumping factors.

In [9] and [5] a system called SYNDOC was presented, which supports
creating structured documents under control of a context-free grammar.

2.2 Tree transducers

One of the main motivations of the structure markup is making the reuse
of the document possible. If the syntax of the document and content
elements are clearly marked, there are many possible reuses. Here we
restrict ourselves to article type documents and their reuses as articles
with different structure. Therefore, we need a device for transforming
trees. For our purposes, finite state tree transducer is a suitable device.
For a more elaborate theory of tree transducers, consult [3].

In case of derivation trees, applying a rule A — x5 ...z,,, where
x; € NUT, corresponds to adding a node for each x; and an arc from A
to x;. Algebraically, we see V = N UT as a ranked alphabet, where each
nonterminal A € N is an m-ary function symbol (m > 1), and terminals
in T are 0-ary function symbols. Trees can be considered as terms that

20 Eila Kuikka, Paula Leinonen, and Martti Penttonen

are defined recursively as follows: Let V' be a set of function symbols,
each having arity n > 0. (i) Each 0-ary symbol of V' is a term, a leaf.
(ii) If ¢1,...,t, are terms and f € V is an n-ary function symbol, then
f(t1,...,t,) is a term. The set of terms so defined is denoted by T'(V'). It
is useful to extend the definition of term to allow variables. Let X be a set
of variables. Extend now (i) to let each 0-ary symbol and each variable be
a term. Then we get the set of terms with variables T'(V, X), where leaves
are O-ary functions (terminals) or variables. Thus, T'(V) = T'(V,V?) and
T(V,X)=T(V,XUV", where V? is the set of 0-ary symbols.

A finite state tree transducer M = (Q, V1, V2, X, qo,0) consists of a
finite set () of states, a ranked wnput alphabet Vi, a ranked output alpha-
bet V5, a set of variables X, the initial state qo € (), and the transition
function

0 Q X T(Vl,X) — T(Vz,Q X T(VQ,X))

In other words, ¢ is a finite set of rules of the form
q:t(X1, .., X)) =2t (g1 Xiyy oot X))

where X1, ..., X, are the variables of a term #(X1,...,X;,), and X;; €
{X1,...,. X}

The transducer M induces a relation Q x T(V1) == T(V2,Q x T(V1))
as follows.

Ift= t(tl,...,tm), t; = 5(q,t(X1,,Xm)) — tl(ql IXil,...,qn : in),
and q; : t;; =" t; , t; € T(Va,Q x T(V1)), then g : t = /(] ,...,t;).

157 715

Finally, M transforms t € T'(Vy) tot' =t' € T'(Va), if qo : t =* t'.

Example 2 Consider the tree transducer

q0:article(W, [date] (D) ,title(text) ,content(A,S)) ->
article(ql:W,title(q0:text) ,keywords(q0:text) ,q0:content(4,S))

ql:author+(author (text) ,W) -> writers(writer(qO:text),ql:W)

ql:author+(author (text)) -> author+(author(qO:text)))

q0:content (abstract (text) ,S) -> content (summary(qO:text),q2:S)

gq2:section+(section(heading(text),P),S) ->
section+(section(heading(q0:text),q3:P),q2:85)

q2:section+(section(heading(text) ,P) ->
section+(section(heading(q0:text),q3:P))

Document transformation by tree transducers 21

q3:paragraph+(paragraph(X) ,P) -> paragraph+(paragraph(q4:X),q3:P)
q3:paragrapht+(paragraph(X)) -> paragraph+(paragraph(q4:X))
q4:paragraph(textpara(text)) -> paragraph(textpara(qO:text))
q4:paragraph(itemlist(I))) -> paragraph(itemlist(q5:I))
g5:item+(item(text),I) -> item+(item(q0:text),q5:I)
g5:item+(item(text)) -> itemt+(item(qO:text))

q0:text -> text

After one step of the transducer, the derivation tree of Figure 2 be-
comes the tree in Figure 3. The final output of the transducer is given in
Figure 4.

article
7 T
g0: aut hor + title keywor ds g0: cont ent
/N N
aut hor aut hor + q0: t ext q0: t ext abstract section+
t ext aut hor t ext section
/\
t ext headi ng par agr aph+
t ext par agr aph
t ext para
t ext

Figure 3: Derivation tree after one transformation step.

22 Eila Kuikka, Paula Leinonen, and Martti Penttonen

article
T
witers title keywor ds cont ent
N N
witer witers t ext t ext sunmary sections
t ext witer t ext section
/\
t ext headi ng par agr aph+
t ext par agr aph

t ext para

t ext

Figure 4: Derivation tree after complete computation.

3 Hierarchic, local, and dense
transformations

For two context-free grammars G; and Gs, a transformation is a relation
from the set of the derivation trees of (G; into the set of the derivation
trees of G5. We require that transformation is defined for all derivation
trees of Gy, but do not require that output of transformation is unique,
or that all derivation trees of G5 occur as a result of a transformation.
The reason for transforming a document is that there is some useful
information stored somewhere in the document and there is a new need to
use it for a similar or a different purpose, and for some reason it cannot

Document transformation by tree transducers 23

be reused in identical form. A requirement for the successful reuse of
a document is that the content is clearly enough marked up, so that
content elements can be picked for reuse. If there is nothing in common,
or the contents is not marked up, automatic transformation for reuse is
impossible. If the structure is well marked and the new need is not very
different, the transformation may be easy to automate. The purpose of
this study is to characterize a class of transformations that are possible
to automate, or at least to semi-automate.

To give a formal definition for the idea of “common”, or “correspond-
ing”, structure elements we introduce the concept of label association. For
any alphabets V; and V5, label association is arelationin A C V; x V5. In a
special case, label association may be a function, but it needs not be. For
example, labels of the tree in Figure 2 can be associated with the labels of
the tree in Figure 4 by mapping author+ to writers, author to writer,
abstract to summary, and other labels to itself. However, we do not
want to associate [date] in V; and keywords in V5 because they do not
have the same semantic meaning. It is better to leave them unassociated,
because they do not have a counterpart in the other document.

The difficulty of the transformation depends on how the “corre-
sponding” elements are situated in the transformed document tree. To
speak about that, we introduce the concept of node association. For
trees t1 € T'(V1), to € T'(Va), we call a node association a relation v from
the nodes of ¢; to the nodes of t». The node association v from #; to t5 re-
spects a label association A from V; to Vs, if the following three conditions
are fulfilled. (i) If (n1,n2) € v and the labels of the nodes are X € V)
and Y € V5, then, (X,Y) € A. (ii) If a node n; of ¢; has a label X such
that (X,Y) € A for some Y € V5, then there is node n» in t5 such that
(n1,n9) € v. (iii) If a node ny of t5 has a label Y such that (X,Y) € A
for some X € Vi, then there is node n; in t; such that (ni,n9) € v.

A tree transformation 7 is hierarchic with respect to a label associa-
tion A, if for any t5 € 7(t1), there is a node association v respecting A such
that whenever (z,u) € v, (y,v) € v, y being a descendant of x implies v
being a descendant of .

The tree transformation 7 is (¢,d)—local for constants ¢ and d and
label association A, if there is a node association v such that whenever the
distance of nodes z and y in ¢; being less than ¢ and (x,u) € v, (y,v) € v,
the distance of v and v in ¢, is less than d.

24 Eila Kuikka, Paula Leinonen, and Martti Penttonen

Finally, 7 is e-dense with respect to constant e and label association A,
if whenever a node has label X associated in A (i.e. having Y such that
(X,Y) € \), it has a descendant associated in A within distance e, or it
does not have any associated descendants.

Intuitively, these concepts are important for the following reasons.
Most of the documents have an hierarchically organized content and it is
not easy to imagine a case, where a part becomes a collection and vice
versa. From the technical point of view, a hierarchic transformation can
be processed by progressing from root to leaves (or alternatively from
leaves to root). Being local means that transformation rule can be de-
cided by a bounded lookahead in the document. Denseness means that
transformable content elements are so closely situated in the document
that the next transformable part can be found by a finite lookahead.

Theorem 1 Let G1 = (Nl,Tl,Pl,Sl) and GQ = (NQ,TQ,PQ,SQ) be
context-free grammars and X be a label association from Vi = N1 U T,
to Vo = NoUTs. If 7 is a transformation from T (V1) to T (V) that re-
spects A and is hierarchic, (¢,d)-local and e-dense for some constants c,
d, e, then there is a finite tree transducer M such that M (t,) = 7(t1) for
all derivation trees of t;.

Proof. Let 7 be a hierarchic, (¢, d)-local and e-dense transformation. Con-
sider a derivation tree t; and t5 € 7(¢1). By Algorithm 1 one can construct
rules of a tree transducer producing to from ¢;.

By Lemma 1 all derivation trees of grammar (G; can be be presented
as a composition of a finite set of trees. By applying Algorithm 1 to all
of these, we get pairs of subtrees to be used as rules to transform all
derivation trees generated by G;. O

Algorithm 1 Construction of tree transducer rules

Input. A derivation treet, by grammar G, a derivation tree ty by gram-
mar Go such that to = 7(t1), a label association \ between G and
G2, and a (¢,d)—local, e—dense node association respecting .

Output. Tree transducer rules implementing .
1. Associate the roots of t1 and to. and mark them as open nodes.

2. If there are mo more open nodes in t, stop. Otherwise choose an
open node ni and its associated node ns in to.

Document transformation by tree transducers 25

3. Ezpand the subtree whose root is ny until in each branch a node
my with a nonempty association mo or a node without associated
descendants in its subtree is found. (Due to denseness assumption,
these nodes are found in the bounded depth.) The nodes in frontier
having a nonempty association are marked open, all other generated
nodes and n are marked closed.

4. FExpand the node no in ty so that the open nodes generated in 3 can be
associated with nodes in to. (Such nodes can be generated in finite
time, because there is a hierarchic and local association.)

5. Go to 2.

4 Document transformation system

In last section, we proved that hierarchic, local and dense transformations
can be implemented by finite state tree transducers, and described how
transducer rules are constructed from the pairs of source tree and target
tree. However, it is more likely that a target tree is not available, and
even if it is, describing the node association in the whole tree might be
cumbersome. Therefore, in this section we discuss, at a less formal level,
how the transformation is can be developed by an interactive procedure.

4.1 Setup of the transformation task

Assume a situation, where there is given a structured document tree ¢, a
grammar (G; by which t; was generated, and a grammar G5 that defines
the target structure to which t; should be transformed. The output of
the transformation t,, that is a derivation tree by G-, and corresponds
to t1 by contents.

4.2 Finding the label association

The transformation procedure starts with a comparison of grammars, and
one should find the corresponding content elements. As a result of this
comparison one gets a label association A, as defined in last section.

It may, however, be difficult to get the label association right at once.
Therefore, it would be good to make the transformation system so flexible
that one can correct or complete the label association and save as much
of the later work as possible.

26 Eila Kuikka, Paula Leinonen, and Martti Penttonen

4.3 Finding node associations

The most essential part of the transformation is finding out, what sub-
derivations by grammar G5 correspond to subderivations of the document
tree derived by GG1. We know that start symbols must correspond to each
others.

Assume that the matching procedure has advanced to a subtree t} of
t; and a leaf node ny of t is labeled with nonterminal Ay, see Figure 5. By
this time a part of the target tree has already been constructed, call it).
By earlier transformation (or by the assumption that start nonterminals
are related in \) we know its matching nonterminal node ns labeled with
nonterminal Ao, which is a leave in t;. Now ¢} is expanded at A; within #;
by rules of G; so much that each leave either has an associated label in A
(like (B1, B2) € Ain Figure 5), or this leave has no descendant in ¢; that is
associated with any label in A\. By denseness assumption this expansion ¢
can be found in constant time. Now we should expand t, respectively.
We should find a derivation by G5 that starts at nonterminal As and
should have associated leaves, like Bs in Figure 5. If we know that a
hierarchic and local transformation respecting A exists, the expansion t}
can be found by a finite search, and ! — tJ defines the transformation
step. In this way rules for the transformation of the whole tree are found.

In the above reasoning there may be several different ¢; that fulfill
the association requirement. Which one is correct? The user should say.

Figure 5: Expansion of the transformation

Document transformation by tree transducers 27

The system should offer alternatives generated by G- and the user ac-
cepts one of them. To speedup the finite search and selection, the system
can use some optimality criteria, like (i) choose the smallest possible sub-
tree, (ii) choose the subtree that keeps the order, etc. Sometimes it may
be useful to allow transformations that do not completely match the la-
bel association criteria—in that case we could use the selection criterion
(iii) choose the subtree with as many matching labels as possible.

4.4 Lazy vs eager transformation system

When tree transducer rules that are needed for transforming a single doc-
ument tree are constructed, it is probable that they are not sufficient for
transforming another document tree. There are strategies to construct
“full” finite state tree transducer, that can perform all transformations
from grammar (G; to grammar G5 respecting a label association A. By
eager strategy one first (automatically) generates all elementary trees and
pumping factors, as stated in Lemma 1, an then constructs transformation
rules for all of these. By Lemma 1 all trees can now be processed.

However, if the grammar G is big, the number of elementary trees
and pumping factors may be high, and some of them may occur seldom.
It is probable that most of the documents are quite similar in structure.
Therefore, the lazy strategy may be more reasonable. First construct
rules for one document, and use these rules as long as they are sufficient.
When a new document cannot be transformed with existing rules, the
system falls to the interactive mode and new rules are constructed. This
approach can also be called teaching by example.

4.5 Experts and novices

As soon as the tree transducer is completely constructed, using it should
be as simple for novice users as using any application program, by a
suitable user interface.

In the construction phase, however, some expertise is required. The
expert user should understand structure definition by grammars. He/she
should also identify, which structure elements (or nonterminals) in two
grammars refer to identical contents. The system should also allow easy
changing of associations, because it is not easy to make the right associ-
ations at the first try.

28 Eila Kuikka, Paula Leinonen, and Martti Penttonen

4.6 Implementation of the transformation system

We have implemented a very rudimentary prototype of the transforma-
tion system. The system can automatically perform local transformations
in small documents. It implements in some way all essential phases from
label association to rule construction and application. However, our pro-
totype is not sufficient for real use, because it is inefficient (written in
Prolog and Tcl/Tk, without optimizations), and user interface is too dif-
ficult except for developers. Some more description about the system is
found in [7].

5 Discussion

There is a need for structured document transformations. As the range
of applications, where structured documents are used, there certainly re-
mains cases, where one just has to use an “ad hoc” method, but when
possible, a suitable methodology should be used.

We characterized a class of transformations, hierarchic, local and dense
transformations, which can be automated by finite state tree transducers.
We believe that these transformations cover a large part of structured
document transformations. We also believe that finite state tree trans-
ducers are a good model for this task because of their cleanness, simplicity,
and sufficient power. Structure transformation is basically replacing tree
structures by others. Top-down progress and state control give rigidity
to this replacement process. For other approaches, see [1] or [2].

In our model, the transformation is defined by a dialogue between the
transformation system and an expert user. The first phase in the proce-
dure is the definition of the label association, the correspondence of the
nonterminals in the two grammars (or document type definitions). The
second phase is the construction of the transformation rules, where the
system suggests rules and the users accepts. In this way it is guaranteed
that the result of the transformation obeys the target structure.

The transformation system must guarantee that the automatic trans-
formation indeed transforms from the given source structure to the given
target structure. It should also give the user intuitive support so that
he/she can become convinced that will be semantically correct, and if
not, an easy way to correct the rule. Our first prototype of transforma-
tion system can be called a transformation system, but is still far from
being useful.

Document transformation by tree transducers 29

References

1]

2]

13]

4]

[5]

16]

7]

18]

19]

E. Akpotsui, V. Quint, Type transformations in structured editing
systems. In: C. Vanoirbeek, G. Coray (eds.): Proceedings of Electronic
Publishing, Cambridge University Press, 1992, pp. 27—41.

R. Furuta and P. D. Stotts, Specifying structured document trans-
formations. In J.C. van Vliet, editor, Document Manipulation and
Typography, The Cambridge Series on Electronic Publishing, pp. 109—
120, Nice, France, 1988. Cambridge University Press.

F. Gécseg and M. Steinby, Tree Automata. Académiai Kiad6, Buda-
best, 1984.

ISO 8879, Information processing—Text and Office Systems—Stan-
dard Generalized Markup Language (SGML). ISO, Geneva, 1986.

E. Kuikka, Processing of Structured Documents Using a Syntax—
Directed Approach. PhD thesis, Kuopio University Publications
C. Natural and Environmental Sciences 53, 1996.

E. Kuikka, P. Leinonen, M. Penttonen, An approach to document
structure transformations. In: Yulin Feng, David Notkin, Marie-
Claude Gaudel (eds): Proceedings of Conference on Software: Theory
and Practice, pp. 906-913, 16’th IFTP World Computer Congress 2000,
Beijing, China.

Eila Kuikka, Paula Leinonen, Martti Penttonen, Quverview of tree
transducer based document transformation system. In: Ethan V. Mun-
son, Derick Wood (eds): Preliminary Proceedings of the Fifth In-
ternational Workshop on Principles of Digital Document Processing
(PODDP’00), 13 p., Munich, Germany, 2000.

E. Kuikka and M. Penttonen, Transformation of structured docu-
ments. Electronic Publishing—Origination, Dissemination, and De-
sign. 8(4):319-341, December 1995.

E. Kuikka, M. Penttonen, and M.-K. Vaisinen, Theory and implemen-
tation of SYNDOC document processing system. Proceedings of the
Second International Conference on Practical Application of Prolog
(PAP-94). London, UK, 1994, pp. 311-327.

