
14 FDPW'2000. Vol. 3. pp. 14�29Do
ument transformationby tree transdu
ersEila Kuikka, Paula Leinonen, and Prof. Martti PenttonenDepartment of Computer S
ien
e and Applied Mathemati
s,University of KuopioP.O.Box 1627 FIN-70211 Kuopio, FinlandE-mail: {kuikka, leinonen, penttonen}�
s.uku.fiAbstra
tWe report a syntax-dire
ted approa
h to
reation and transformationof stru
tured do
uments. We assume that the do
uments to be handledhave a synta
ti
ally definable stru
ture. Whatever is done with thedo
ument, at
reation, at later transformations or other reuses, it isdone in a

ordan
e with the grammati
al stru
ture. In this work wefo
us at the transformation of do
uments from stru
ture to another.We show that in an important
ase,
alled lo
al transformations, thetransformation
an be performed by finite state tree transdu
ers, andsuggest a system supporting this kind of transformations.Contents1 Introdu
tion . 152 Grammars and transdu
ers . 162.1 Context�free grammars . 162.2 Tree transdu
ers . 193 Hierar
hi
, lo
al, and dense transformations 224 Do
ument transformation system 254.1 Setup of the transformation task 254.2 Finding the label asso
iation . 254.3 Finding node asso
iations . 264.4 Lazy vs eager transformation system 274.5 Experts and novi
es . 274.6 Implementation of the transformation system 285 Dis
ussion . 28

 Eila Kuikka, Paula Leinonen, and Martti Penttonen, 2000

Do
ument transformation by tree transdu
ers 151 Introdu
tionUsually, when we write a text for professional reasons, like a report, thetext has some logi
al stru
ture. We want to make the
ontent of our textunderstandable for the reader. There are many ways to externally expressthe stru
ture, like using the empty spa
e, the size and type of the fontet
. It is usual in word pro
essing to �de
orate� the text with these exter-nal methods, indire
tly giving it some stru
ture. In stru
tured do
umentpro
essing, on the
ontrary, the stru
ture
omes first and external form isse
ondary. Stru
ture and form may even be
ompletely separated so thata do
ument with a stru
ture marking does not say anything about theform how the do
ument should look like. Still it is possible to produ
e abeautifully typeset do
ument starting from a stru
tured do
ument, evenautomati
ally, as soon as rules for asso
iating form to stru
ture are given.It is even possible that different styles of typesetting
an be applied to getdifferent forms of the same stru
tured do
ument. Even if these do
umentslook different, they have the same
ontents and the same stru
ture ele-ments expressed in the original stru
tured do
ument. Stru
ture markupbrings some other advantages, too. Stru
ture markups make possible tofiltering out parts of the do
ument by stru
ture information, instead ofmere linear string sear
h. It also makes automati

hanges in the stru
turepossible, see [5℄, e.g. It is the aim of this arti
le to study, how stru
tureddo
uments
an be automati
ally transformed to other stru
ture. Here wetry to report in a stri
t and
on
ise form the work presented in [8, 6, 7℄.In syntax-dire
ted approa
h to stru
tured do
ument pro
essing (seeFigure 1), the stru
ture of the do
ument is defined by a formal grammar,
alled do
ument type definition in SGML and XML
ulture [4℄. When thedo
ument is being written, the software for
es, supports or
he
ks thatthe do
ument indeed follows the stru
ture defined by the grammar.When an existing do
ument is transformed to another stru
ture, it isassumed that the sour
e do
ument and the target do
ument have mu
hin
ommon. One
annot transform an almana
 to �Don Quijote�. Mostof the
ontent elements are
ommon and there is some similarity in thestru
ture, even if some elements are missing in one of the do
uments andthe order of stru
ture elements may
hange. It is likely that some humaninterpretation is needed to tell the transformation system that �author�required by the sour
e grammar and �writer� of the target grammar prob-ably mean the same.

16 Eila Kuikka, Paula Leinonen, and Martti Penttonen
source

grammar

human
interface

target
grammar

label
association

source
tree

human
interface

human
interface

association
tree

transducer

target
tree

label
association

proc.
association

proc.

transducer
generation

syntax
directed
editor

creation

transformation

node
node

Figure 1: Ar
hite
ture of a do
ument
reation/transformation systemA s
heme of a do
ument
reation/transformation system is depi
tedin Figure 1.2 Grammars and transdu
ersInstead of XML notation we prefer using the plain grammar notationhere. In this se
tion, two devi
es that form the basis of this work, arepresented: the grammar that is used to define a stru
ture and to
reate ado
ument, and the tree transdu
er that is used to transform a do
umentwith a stru
ture to a do
ument with another stru
ture.2.1 Context�free grammarsA
ontext-free grammar is a quadruple G = (V; T; P; S), where V and Tare finite sets
alled nonterminals and terminals, S 2 V is the start symboland P is a finite set of rules of the form A! x, A 2 V , x 2 (V [T)�. Inparti
ular, the empty string � is allowed as the right hand side of a rule.A string uAv 2 (V [T)� derives dire
tly to uxv, denote uAv) uxv, ifthere is a rule A! x 2 P . A string u derives to a string v, denote u)� v,if there are strings u = u0; u1; : : : ; um su
h that ui � 1) ui for all i. In

Do
ument transformation by tree transdu
ers 17other words,)� is the reflexive, transitive
losure of). If S) w, w is
alled a sentential form of the grammar G. The language generated by Gis the set L(G) = fwjS)� w;w 2 T �g.To ea
h derivation A)� w of G, a derivation tree is asso
iated asfollows. A node labeled with A is the root of the derivation tree. If thewhole derivation is A) w1) : : :) wi) wi+1) : : :) w and wealready have the derivation tree for A) w1) : : :) wi, it is extendedfor the derivation A) w1) : : :) wi) wi+1 as follows. Let the dire
tderivation step be wi = uBv) uyv = wi+1, where B ! y 2 P . Assumethat y = y0y1 : : : yj , where yk 2 V [T for all k. Then there are ar
sfrom the node labeled with B to new nodes labeled with y0; : : : ; yj andthese nodes are
alled
hildren of Y . We also use the term parent for theinverse of
hild, des
endant for the reflexive, transitive
losure of
hild,and an
estor for the reflexive, transitive
losure of parent.Example 1 Consider the grammar, whose start symbol is arti
le, othernonterminals are author, date, title,
ontent, abstra
t, se
tion,heading, paragraph, itemlist, textpara, and item, the only terminalis text, and the rules arearti
le -> author+ [date℄ title
ontentauthor -> textdate -> texttitle -> text
ontent -> abstra
t se
tion+abstra
t -> textse
tion -> heading paragraph+heading -> textparagraph -> textparaparagraph -> itemlistitemlist -> item+textpara -> textitem -> textIn the rules some abbreviations is used. B+ means �any number ofB's�, i.e. B+ behaves as if it were a nonterminal and there were rulesB+! B B+ and B+ ! B in the grammar. [B℄ means �zero or one B�and it has the same effe
t as rules [B℄! � and [B℄! B. Figure 2 presentsa derivation tree generated by this grammar. A
tually, the output of the

18 Eila Kuikka, Paula Leinonen, and Martti Penttonen
article

author+ [date] title content

author

text

text abstract section+

text section

heading

text

εauthor+

author

paragraph+

paragraph

textpara

text

textFigure 2: A derivation tree generated by the grammar of example 1.grammar is text text text text text text read at the leaves of thederivation tree. Ea
h text is a homogeneous
ontent element of a do
u-ment. In word pro
essing it is
ustomary that different
ontent elementsare laid out differently to express its role in the do
ument, for examplethe text below title is typeset with a big font. In stru
tured do
umentpro
essing, instead, we usually identify the do
ument and its derivationtree. Hen
e, we would rather say thatarti
le(author+(author(text),author(text)),[date℄(),title(text),
ontent(abstra
t(text),se
tion+(se
tion(heading(text),paragraph(textpara(text)))))is the do
ument, without any layout.

Do
ument transformation by tree transdu
ers 19Grammar is a finite devi
e that is
apable of produ
ing an infinitenumber of strings and derivation trees. If we
onsider a path from a leafto the root of the derivation tree, if the length is greater than the size ofthe alphabet, a nonterminal A must appear twi
e on the path. Hen
e, thederivation must be of the form S)� uAv)� uxAyv)� uxwyv. Thesubderivation A)� xAy is
alled a pumping fa
tor and it
an be appliedany number of times to get S)� uxiwyiv, i � 0. Noti
e that i = 0
orresponds the
ase when the pumping fa
tor is not applied at all. Thus,a pumping fa
tor
an be eliminated.Consider all possible derivation trees generated by a grammar G. Ifin all derivation trees all pumping fa
tors are eliminated, we get a finitenumber of different trees (be
ause the depth is bounded). We
all thesetrees elementary trees. By reverse argument, all derivation trees
an be
onstru
ted by adding pumping fa
tors to these trees. Note also that we
an
hoose pumping fa
tors so that in paths from leaf to root the samenonterminal may o

ur only as the root node and the leaf node. Thusalso the number of pumping fa
tors is finite. We state these fa
ts asLemma 1 For any
ontext-free grammar, all derivation trees
an be rep-resented as a
omposition of a finite set of elementary trees and a finiteset of pumping fa
tors.In [9℄ and [5℄ a system
alled SYNDOC was presented, whi
h supports
reating stru
tured do
uments under
ontrol of a
ontext-free grammar.2.2 Tree transdu
ersOne of the main motivations of the stru
ture markup is making the reuseof the do
ument possible. If the syntax of the do
ument and
ontentelements are
learly marked, there are many possible reuses. Here werestri
t ourselves to arti
le type do
uments and their reuses as arti
leswith different stru
ture. Therefore, we need a devi
e for transformingtrees. For our purposes, finite state tree transdu
er is a suitable devi
e.For a more elaborate theory of tree transdu
ers,
onsult [3℄.In
ase of derivation trees, applying a rule A ! x1x2 : : : xm, wherexi 2 N [T ,
orresponds to adding a node for ea
h xi and an ar
 from Ato xi. Algebrai
ally, we see V = N [T as a ranked alphabet, where ea
hnonterminal A 2 N is an m-ary fun
tion symbol (m � 1), and terminalsin T are 0-ary fun
tion symbols. Trees
an be
onsidered as terms that

20 Eila Kuikka, Paula Leinonen, and Martti Penttonenare defined re
ursively as follows: Let V be a set of fun
tion symbols,ea
h having arity n � 0. (i) Ea
h 0-ary symbol of V is a term, a leaf.(ii) If t1; : : : ; tn are terms and f 2 V is an n-ary fun
tion symbol, thenf(t1; : : : ; tn) is a term. The set of terms so defined is denoted by T (V). Itis useful to extend the definition of term to allow variables. Let X be a setof variables. Extend now (i) to let ea
h 0-ary symbol and ea
h variable bea term. Then we get the set of terms with variables T (V;X), where leavesare 0-ary fun
tions (terminals) or variables. Thus, T (V) = T (V; V 0) andT (V;X) = T (V;X [V 0), where V 0 is the set of 0-ary symbols.A finite state tree transdu
er M = (Q; V1; V2; X; q0; Æ)
onsists of afinite set Q of states, a ranked input alphabet V1, a ranked output alpha-bet V2, a set of variables X , the initial state q0 2 Q, and the transitionfun
tion Æ : Q� T (V1; X)! T (V2; Q� T (V2; X)):In other words, Æ is a finite set of rules of the formq : t(X1; : : : ; Xm)! t0(q1 : Xi1 ; : : : ; qn : Xin):where X1, . . . , Xm are the variables of a term t(X1; : : : ; Xm), and Xij 2fX1; : : : ; Xmg.The transdu
erM indu
es a relation Q� T (V1)!� T �V2; Q�T (V1)�as follows.If t = t(t1; : : : ; tm), ti = Æ(q; t(X1; : : : ; Xm)) ! t0(q1 : Xi1 ; : : : ; qn : Xin),and qj : tij !� t0ij , t0ij 2 T (V2; Q� T (V1)), then q : t!� t0(t0i1 ; : : : ; t0in).Finally, M transforms t 2 T (V1) to t0 = t0 2 T (V2), if q0 : t!� t0.Example 2 Consider the tree transdu
erq0:arti
le(W,[date℄(D),title(text),
ontent(A,S)) ->arti
le(q1:W,title(q0:text),keywords(q0:text),q0:
ontent(A,S))q1:author+(author(text),W) -> writers(writer(q0:text),q1:W)q1:author+(author(text)) -> author+(author(q0:text)))q0:
ontent(abstra
t(text),S) ->
ontent(summary(q0:text),q2:S)q2:se
tion+(se
tion(heading(text),P),S) ->se
tion+(se
tion(heading(q0:text),q3:P),q2:S)q2:se
tion+(se
tion(heading(text),P) ->se
tion+(se
tion(heading(q0:text),q3:P))

Do
ument transformation by tree transdu
ers 21q3:paragraph+(paragraph(X),P) -> paragraph+(paragraph(q4:X),q3:P)q3:paragraph+(paragraph(X)) -> paragraph+(paragraph(q4:X))q4:paragraph(textpara(text)) -> paragraph(textpara(q0:text))q4:paragraph(itemlist(I))) -> paragraph(itemlist(q5:I))q5:item+(item(text),I) -> item+(item(q0:text),q5:I)q5:item+(item(text)) -> item+(item(q0:text))q0:text -> textAfter one step of the transdu
er, the derivation tree of Figure 2 be-
omes the tree in Figure 3. The final output of the transdu
er is given inFigure 4.
article

author

text

abstract section+

text section

heading

text

author+

author

paragraph+

paragraph

textpara

text

text

q0:content

q0:textq0:text

title keywordsq0:author+

Figure 3: Derivation tree after one transformation step.

22 Eila Kuikka, Paula Leinonen, and Martti Penttonen
article

section

heading paragraph+

paragraph

textpara

title keywords

writer

writers

writers

writer

content

summary sections

text

text

text text

text

text

textFigure 4: Derivation tree after
omplete
omputation.3 Hierar
hi
, lo
al, and densetransformationsFor two
ontext-free grammars G1 and G2, a transformation is a relationfrom the set of the derivation trees of G1 into the set of the derivationtrees of G2. We require that transformation is defined for all derivationtrees of G1, but do not require that output of transformation is unique,or that all derivation trees of G2 o

ur as a result of a transformation.The reason for transforming a do
ument is that there is some usefulinformation stored somewhere in the do
ument and there is a new need touse it for a similar or a different purpose, and for some reason it
annot

Do
ument transformation by tree transdu
ers 23be reused in identi
al form. A requirement for the su

essful reuse ofa do
ument is that the
ontent is
learly enough marked up, so that
ontent elements
an be pi
ked for reuse. If there is nothing in
ommon,or the
ontents is not marked up, automati
 transformation for reuse isimpossible. If the stru
ture is well marked and the new need is not verydifferent, the transformation may be easy to automate. The purpose ofthis study is to
hara
terize a
lass of transformations that are possibleto automate, or at least to semi-automate.To give a formal definition for the idea of �
ommon�, or �
orrespond-ing�, stru
ture elements we introdu
e the
on
ept of label asso
iation. Forany alphabets V1 and V2, label asso
iation is a relation in � � V1�V2. In aspe
ial
ase, label asso
iation may be a fun
tion, but it needs not be. Forexample, labels of the tree in Figure 2
an be asso
iated with the labels ofthe tree in Figure 4 by mapping author+ to writers, author to writer,abstra
t to summary, and other labels to itself. However, we do notwant to asso
iate [date℄ in V1 and keywords in V2 be
ause they do nothave the same semanti
 meaning. It is better to leave them unasso
iated,be
ause they do not have a
ounterpart in the other do
ument.The diffi
ulty of the transformation depends on how the �
orre-sponding� elements are situated in the transformed do
ument tree. Tospeak about that, we introdu
e the
on
ept of node asso
iation. Fortrees t1 2 T (V1), t2 2 T (V2), we
all a node asso
iation a relation � fromthe nodes of t1 to the nodes of t2. The node asso
iation � from t1 to t2 re-spe
ts a label asso
iation � from V1 to V2, if the following three
onditionsare fulfilled. (i) If (n1; n2) 2 � and the labels of the nodes are X 2 V1and Y 2 V2, then, (X;Y) 2 �. (ii) If a node n1 of t1 has a label X su
hthat (X;Y) 2 � for some Y 2 V2, then there is node n2 in t2 su
h that(n1; n2) 2 �. (iii) If a node n2 of t2 has a label Y su
h that (X;Y) 2 �for some X 2 V1, then there is node n1 in t1 su
h that (n1; n2) 2 �.A tree transformation � is hierar
hi
 with respe
t to a label asso
ia-tion �, if for any t2 2 �(t1), there is a node asso
iation � respe
ting � su
hthat whenever (x; u) 2 �, (y; v) 2 �, y being a des
endant of x implies vbeing a des
endant of u.The tree transformation � is (
; d)�lo
al for
onstants
 and d andlabel asso
iation �, if there is a node asso
iation � su
h that whenever thedistan
e of nodes x and y in t1 being less than
 and (x; u) 2 �, (y; v) 2 �,the distan
e of u and v in t2 is less than d.

24 Eila Kuikka, Paula Leinonen, and Martti PenttonenFinally, � is e-dense with respe
t to
onstant e and label asso
iation �,if whenever a node has label X asso
iated in � (i.e. having Y su
h that(X;Y) 2 �), it has a des
endant asso
iated in � within distan
e e, or itdoes not have any asso
iated des
endants.Intuitively, these
on
epts are important for the following reasons.Most of the do
uments have an hierar
hi
ally organized
ontent and it isnot easy to imagine a
ase, where a part be
omes a
olle
tion and vi
eversa. From the te
hni
al point of view, a hierar
hi
 transformation
anbe pro
essed by progressing from root to leaves (or alternatively fromleaves to root). Being lo
al means that transformation rule
an be de-
ided by a bounded lookahead in the do
ument. Denseness means thattransformable
ontent elements are so
losely situated in the do
umentthat the next transformable part
an be found by a finite lookahead.Theorem 1 Let G1 = (N1; T1; P1; S1) and G2 = (N2; T2; P2; S2) be
ontext-free grammars and � be a label asso
iation from V1 = N1 [T1to V2 = N2 [T2. If � is a transformation from T (V1) to T (V2) that re-spe
ts � and is hierar
hi
, (
; d)-lo
al and e-dense for some
onstants
,d, e, then there is a finite tree transdu
er M su
h that M(t1) = �(t1) forall derivation trees of t1.Proof. Let � be a hierar
hi
, (
; d)-lo
al and e-dense transformation. Con-sider a derivation tree t1 and t2 2 �(t1). By Algorithm 1 one
an
onstru
trules of a tree transdu
er produ
ing t2 from t1.By Lemma 1 all derivation trees of grammar G1
an be be presentedas a
omposition of a finite set of trees. By applying Algorithm 1 to allof these, we get pairs of subtrees to be used as rules to transform allderivation trees generated by G1. �Algorithm 1 Constru
tion of tree transdu
er rulesInput. A derivation tree t1 by grammar G1, a derivation tree t2 by gram-mar G2 su
h that t2 = �(t1), a label asso
iation � between G1 andG2, and a (
; d)�lo
al, e�dense node asso
iation respe
ting �.Output. Tree transdu
er rules implementing � .1. Asso
iate the roots of t1 and t2. and mark them as open nodes.2. If there are no more open nodes in t1, stop. Otherwise
hoose anopen node n1 and its asso
iated node n2 in t2.

Do
ument transformation by tree transdu
ers 253. Expand the subtree whose root is n1 until in ea
h bran
h a nodem1 with a nonempty asso
iation m2 or a node without asso
iateddes
endants in its subtree is found. (Due to denseness assumption,these nodes are found in the bounded depth.) The nodes in frontierhaving a nonempty asso
iation are marked open, all other generatednodes and n are marked
losed.4. Expand the node n2 in t2 so that the open nodes generated in 3
an beasso
iated with nodes in t2. (Su
h nodes
an be generated in finitetime, be
ause there is a hierar
hi
 and lo
al asso
iation.)5. Go to 2.4 Do
ument transformation systemIn last se
tion, we proved that hierar
hi
, lo
al and dense transformations
an be implemented by finite state tree transdu
ers, and des
ribed howtransdu
er rules are
onstru
ted from the pairs of sour
e tree and targettree. However, it is more likely that a target tree is not available, andeven if it is, des
ribing the node asso
iation in the whole tree might be
umbersome. Therefore, in this se
tion we dis
uss, at a less formal level,how the transformation is
an be developed by an intera
tive pro
edure.4.1 Setup of the transformation taskAssume a situation, where there is given a stru
tured do
ument tree t1, agrammar G1 by whi
h t1 was generated, and a grammar G2 that definesthe target stru
ture to whi
h t1 should be transformed. The output ofthe transformation t2, that is a derivation tree by G2, and
orrespondsto t1 by
ontents.4.2 Finding the label asso
iationThe transformation pro
edure starts with a
omparison of grammars, andone should find the
orresponding
ontent elements. As a result of this
omparison one gets a label asso
iation �, as defined in last se
tion.It may, however, be diffi
ult to get the label asso
iation right at on
e.Therefore, it would be good to make the transformation system so flexiblethat one
an
orre
t or
omplete the label asso
iation and save as mu
hof the later work as possible.

26 Eila Kuikka, Paula Leinonen, and Martti Penttonen4.3 Finding node asso
iationsThe most essential part of the transformation is finding out, what sub-derivations by grammar G2
orrespond to subderivations of the do
umenttree derived by G1. We know that start symbols must
orrespond to ea
hothers.Assume that the mat
hing pro
edure has advan
ed to a subtree t01 oft1 and a leaf node n1 of t is labeled with nonterminal A1, see Figure 5. Bythis time a part of the target tree has already been
onstru
ted,
all it t02.By earlier transformation (or by the assumption that start nonterminalsare related in �) we know its mat
hing nonterminal node n2 labeled withnonterminal A2, whi
h is a leave in t02. Now t01 is expanded at A1 within t1by rules of G1 so mu
h that ea
h leave either has an asso
iated label in �(like (B1; B2) 2 � in Figure 5), or this leave has no des
endant in t1 that isasso
iated with any label in �. By denseness assumption this expansion t001
an be found in
onstant time. Now we should expand t02 respe
tively.We should find a derivation by G2 that starts at nonterminal A2 andshould have asso
iated leaves, like B2 in Figure 5. If we know that ahierar
hi
 and lo
al transformation respe
ting � exists, the expansion t002
an be found by a finite sear
h, and t001 ! t002 defines the transformationstep. In this way rules for the transformation of the whole tree are found.In the above reasoning there may be several different t002 that fulfillthe asso
iation requirement. Whi
h one is
orre
t? The user should say.
t 1 t 2

S S

A A

B B

1 2

1 2

1 2

t’ t’1 2

t" t"1 2

Figure 5: Expansion of the transformation

Do
ument transformation by tree transdu
ers 27The system should offer alternatives generated by G2 and the user a
-
epts one of them. To speedup the finite sear
h and sele
tion, the system
an use some optimality
riteria, like (i)
hoose the smallest possible sub-tree, (ii)
hoose the subtree that keeps the order, et
. Sometimes it maybe useful to allow transformations that do not
ompletely mat
h the la-bel asso
iation
riteria�in that
ase we
ould use the sele
tion
riterion(iii)
hoose the subtree with as many mat
hing labels as possible.4.4 Lazy vs eager transformation systemWhen tree transdu
er rules that are needed for transforming a single do
-ument tree are
onstru
ted, it is probable that they are not suffi
ient fortransforming another do
ument tree. There are strategies to
onstru
t�full� finite state tree transdu
er, that
an perform all transformationsfrom grammar G1 to grammar G2 respe
ting a label asso
iation �. Byeager strategy one first (automati
ally) generates all elementary trees andpumping fa
tors, as stated in Lemma 1, an then
onstru
ts transformationrules for all of these. By Lemma 1 all trees
an now be pro
essed.However, if the grammar G1 is big, the number of elementary treesand pumping fa
tors may be high, and some of them may o

ur seldom.It is probable that most of the do
uments are quite similar in stru
ture.Therefore, the lazy strategy may be more reasonable. First
onstru
trules for one do
ument, and use these rules as long as they are suffi
ient.When a new do
ument
annot be transformed with existing rules, thesystem falls to the intera
tive mode and new rules are
onstru
ted. Thisapproa
h
an also be
alled tea
hing by example.4.5 Experts and novi
esAs soon as the tree transdu
er is
ompletely
onstru
ted, using it shouldbe as simple for novi
e users as using any appli
ation program, by asuitable user interfa
e.In the
onstru
tion phase, however, some expertise is required. Theexpert user should understand stru
ture definition by grammars. He/sheshould also identify, whi
h stru
ture elements (or nonterminals) in twogrammars refer to identi
al
ontents. The system should also allow easy
hanging of asso
iations, be
ause it is not easy to make the right asso
i-ations at the first try.

28 Eila Kuikka, Paula Leinonen, and Martti Penttonen4.6 Implementation of the transformation systemWe have implemented a very rudimentary prototype of the transforma-tion system. The system
an automati
ally perform lo
al transformationsin small do
uments. It implements in some way all essential phases fromlabel asso
iation to rule
onstru
tion and appli
ation. However, our pro-totype is not suffi
ient for real use, be
ause it is ineffi
ient (written inProlog and T
l/Tk, without optimizations), and user interfa
e is too dif-fi
ult ex
ept for developers. Some more des
ription about the system isfound in [7℄.5 Dis
ussionThere is a need for stru
tured do
ument transformations. As the rangeof appli
ations, where stru
tured do
uments are used, there
ertainly re-mains
ases, where one just has to use an �ad ho
� method, but whenpossible, a suitable methodology should be used.We
hara
terized a
lass of transformations, hierar
hi
, lo
al and densetransformations, whi
h
an be automated by finite state tree transdu
ers.We believe that these transformations
over a large part of stru
tureddo
ument transformations. We also believe that finite state tree trans-du
ers are a good model for this task be
ause of their
leanness, simpli
ity,and suffi
ient power. Stru
ture transformation is basi
ally repla
ing treestru
tures by others. Top-down progress and state
ontrol give rigidityto this repla
ement pro
ess. For other approa
hes, see [1℄ or [2℄.In our model, the transformation is defined by a dialogue between thetransformation system and an expert user. The first phase in the pro
e-dure is the definition of the label asso
iation, the
orresponden
e of thenonterminals in the two grammars (or do
ument type definitions). These
ond phase is the
onstru
tion of the transformation rules, where thesystem suggests rules and the users a

epts. In this way it is guaranteedthat the result of the transformation obeys the target stru
ture.The transformation system must guarantee that the automati
 trans-formation indeed transforms from the given sour
e stru
ture to the giventarget stru
ture. It should also give the user intuitive support so thathe/she
an be
ome
onvin
ed that will be semanti
ally
orre
t, and ifnot, an easy way to
orre
t the rule. Our first prototype of transforma-tion system
an be
alled a transformation system, but is still far frombeing useful.

Do
ument transformation by tree transdu
ers 29Referen
es[1℄ E. Akpotsui, V. Quint, Type transformations in stru
tured editingsystems. In: C. Vanoirbeek, G. Coray (eds.): Pro
eedings of Ele
troni
Publishing, Cambridge University Press, 1992, pp. 27�41.[2℄ R. Furuta and P. D. Stotts, Spe
ifying stru
tured do
ument trans-formations. In J.C. van Vliet, editor, Do
ument Manipulation andTypography, The Cambridge Series on Ele
troni
 Publishing, pp. 109�120, Ni
e, Fran
e, 1988. Cambridge University Press.[3℄ F. G�e
seg and M. Steinby, Tree Automata. A
ad�emiai Kiad�o, Buda-best, 1984.[4℄ ISO 8879, Information pro
essing�Text and Offi
e Systems�Stan-dard Generalized Markup Language (SGML). ISO, Geneva, 1986.[5℄ E. Kuikka, Pro
essing of Stru
tured Do
uments Using a Syntax�Dire
ted Approa
h. PhD thesis, Kuopio University Publi
ationsC. Natural and Environmental S
ien
es 53, 1996.[6℄ E. Kuikka, P. Leinonen, M. Penttonen, An approa
h to do
umentstru
ture transformations. In: Yulin Feng, David Notkin, Marie-Claude Gaudel (eds): Pro
eedings of Conferen
e on Software: Theoryand Pra
ti
e, pp. 906�913, 16'th IFIP World Computer Congress 2000,Beijing, China.[7℄ Eila Kuikka, Paula Leinonen, Martti Penttonen, Overview of treetransdu
er based do
ument transformation system. In: Ethan V. Mun-son, Deri
k Wood (eds): Preliminary Pro
eedings of the Fifth In-ternational Workshop on Prin
iples of Digital Do
ument Pro
essing(PODDP'00), 13 p., Muni
h, Germany, 2000.[8℄ E. Kuikka and M. Penttonen, Transformation of stru
tured do
u-ments. Ele
troni
 Publishing�Origination, Dissemination, and De-sign. 8(4):319�341, De
ember 1995.[9℄ E. Kuikka, M. Penttonen, and M.-K. V�ais�anen, Theory and implemen-tation of SYNDOC do
ument pro
essing system. Pro
eedings of theSe
ond International Conferen
e on Pra
ti
al Appli
ation of Prolog(PAP-94). London, UK, 1994, pp. 311�327.

