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Abstract

Several recent results on the queueing systems involving the
random environment state that some models of this class allow de-
composition. For these cases, steady state joint distributions of
certain interest might be presented as a product of probabilities
characterizing separately the state of random environment and the
state of the queueing system. In this paper we consider a general-
ized heterogeneous blocking queueing scheme in the steady state.
For the scheme we obtain necessary and sufficient conditions which
guarantee the correctness of the decomposition. We also obtain
the joint distribution of the state of the queueing system and the
state of the random environment in the analytical product form and
prove that the obtained distribution is independent of the service
times distribution.

1 Introduction

Many areas appeal to stochastic models whose essential parameters vary
randomly over time, depending on the state of some external stochastic
process. The external process is usually named the random environment.
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In the telecommunication area these models undoubtedly are of great
interest, as they allow a series of practically important interpretations.
The most obvious examples of the case are systems whose packets or
connections arrival rate, service rate or service scheduling may change
during the observation period. These models also allow to investigate
the cases of server breakdown or the rush hour phenomena. Certainly
the set of possible interpretations is much wider than the given examples
describe.

Usually the queues whose parameters vary randomly over time are
named queues involving in a random environment. Typically these models
possess a high complexity. Therefore the corresponding analysis raise
significant challenges and results are often cumbersome and insufficient.

Nevertheless, there is a class of blocking queuing systems in a random
environment which allows obtaining explicit analytical solutions. In the
cases one may acquire the exact product forms for the system’s important
characteristics like joint distribution of the state of a random environment
and the busy servers number. At the same time, the comparatively simple
analytical results are obtainable only under special restrictions on the
parameters of arrival and departure processes.

Another important fact is that some of the models mentioned above
possess the invariance property (see for instance [3]). This is also a sig-
nificant direction of the analysis since the invariance property widens the
usability of the model.

The model considered in this paper might be treated as a generaliza-
tion of the queuing blocking system investigated in [3] and [7]. We analyze
a general heterogeneous blocking system in a random environment with
state dependent arrival. We have formulated the necessary and sufficient
conditions which allow presenting the joint steady state distribution of
the external environment state and the state of the system in an explicit
product form. The state of the system is formulated as a vector which
reflects the nature of the system’s heterogeneity. We use a random ergodic
Markovian process with discrete space of states as a model of the external
environment. The ergodic property of the process allows us to consider
the steady state characteristics of the whole model.

The rest of the paper is organized as follows. Section 2 contains the
description of the queuing system under investigation and the formaliza-
tion of the problems considered. The necessary and sufficient conditions
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which provide the existence of the product forms for the distribution in-
troduced in section 2 are formulated in theorem in section 3. The proof
of the theorem also shows that the theorem conditions provide the invari-
ance property for the model and the distribution obtained in the product
form does not depend on the service times distribution. Section 4 in-
cludes some remarks and discussion. Using simple random time change,
we present an extended detailed analysis and interpretation of the estab-
lished conditions.

2 Description of the Model

The considered model consists of two parts. The first is an external
environment, and the second is the same service system. The external
environment is described as an ergodic continuous time Markovian pro-
cess £(t) with a discrete state of space Y and the rates of the transi-
tions gyy: y,y¢ € Y. The steady state distribution of £(¢) is set as a
sequence {7y }yev-

The queue consists of several groups of the servers. All servers in
a group are of the same service ability. Let us define the state of the
system as vector N, n; € N, i = 1...s where s is the general number
of device groups and n; is the number of busy servers in a group i. If the
system is found in the state NV at a time moment ¢, then the probability
of new customer arrival inside the term ¢ + At in the group ¢ is defined
as \i(y, N)At 4+ o(At), where y € Y. The probability of two or more
customers arriving inside the term At has the order o(At). Let us denote
the number of servers in the group as m;. If the customer arrives in the
service group, it chooses a free server arbitrarily.

The customer service times are realizations of the random variables 7;
and depend on the number of group which serves the customer and the
state of the external environment. The service rates are correspondingly
defined as p;(y). We do not specify the service times distribution function,
so any function may be assumed.

If the customer arriving in the service group finds all its servers busy,
it is lost. Let us name the described queue Yo, (Figure 1).

Let us also associate with the state of the system the random pro-
cess n(t) = {&(t), N(t)}+>0, where N (t) is the state of the service system
at a time t. Let () denote the set of vectors N that the states of the system



Decomposition of the Blocking Queueing Model 49
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Figure 1. Queueing system Yepy

allow. The space of states of the process 1(t) is a union of set ¥ and set
@. The steady state distribution of the process n(t) always exists due to
the general theorems formulated by A.Borovkov [1]. We will consider the
following limits

Py, N) = Jim Pr(E(t) =y, N(t)=N).

The limits define the steady state distribution of 7(t).
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3 The main result

Assume that there is a function g(y) such that

Ai(y, N) = g(y)vi(N) (3.1)

and a set of constants {7;}{_; such that

ni(y) = g(y)7i - (3.2)

Also assume that v; (V) satisfies equality

ni+-+ns -1 -1
I v (Z Olipreer D 5s,im> =
=1 m=1 m=1
ni+-+ns -1 -1
= H ’Ujlf (Z 617ilm’ ceey Z (5571';”) 5 (33)
=1 m=1 m=1
where {ni,...,ns} is any available vector N € Q; {i1,...,0n,+--4n, } and
{i%, .- )iy, 4. pp, } are any two set and 6;; = 1if i = j or 6;; = 0 if i # j.

Formula (3.3) means that in average customers do not prefer a par-
ticular group of servers. For all vector R € @ so that r; < n;,
i=1,...,5—1,7+1,...,5, and r; +1 < n;, this condition may be
reduced to the following one:

’Ui(N)U]'(N + €i) = ’U]'(N)’Ui(N + 6]') R
i.e. any way of accumulation of the product V(N) gives the equal result
or the results differ smaller than o(At).

Theorem 1. The random process 7n(t) has the steady state distribu-
tion of the following form

V(N)

p(yaN) = PoTy ) (34)

—.

nglr"

i=1

if and only if \i(y, N) and pu;(y) satisfy (3.1), (3.2) and (3.3). Here pg is
a normalizing constant and V (N) is the left (right) part of (3.3).



Decomposition of the Blocking Queueing Model 51

Proof. Necessity. Let us consider the case of exponentially distributed
service times. The distributions parameter is p;(y)'. The case n(t) is a
regular Markovian process. If (3.4) is the steady state distribution of 7(t)
it must satisfy the global balance equations (i.e. Kolmogorov equations).
The process may reach state (y, N) only from the states:

> (y, N — e;) with the rate \;(y, N);
> (y, N + e;) with the rate p;(y)(n; + 1);
> (y', N) with the rate g,,.

Hence the global balance equations system is

=p(y,00 DXy, 0) + 3 miw)ply, 0+ ) + D ayyp(y',0) =0 (3.5)

y' €Y

s
> ity N = ep(y, N =€) = (\ily, NI (n3) + nigss(y)ply, N) +
i=1
+ (ni + Dpi(y)p(y, N +€i)] + > ayypy/,N)=0, (3.6)
y'ey
where I(n;) is 0 if n; = m; and 1 otherwise. Equations (3.5) describe the
system’s behavior if it is idle. Equations (3.6) are valid for all the rest of
the states.
Let us also examine the partial balance equations [5]. The following
one allows deriving conditions (3.1) and (3.2)

PUN) Dy =D ', N)gyy -
y7#y' y'#y

The last formula presents the Kolmogorov equation for the process £(t),
which has a unique solution up to the constant multiplier. The solution
is the steady state distribution m,. Hence

p(y,N) = m, P(N) ,

L Actually in general case, the service times distribution is the convolution of expo-
nential distributions with parameters u;(y), pi(y’), ni(y"") etc., since the state of the
environment may change during the customer service time.
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where P(N) is expression independent on y. To satisfy the global balance
equations this expression must be a product whose factors are of the
following form
1i(y)
in correspondence with N. If products P(N) for all N are independent
of y then any of those factors must be independent of y and hence condi-
tions (3.1) and (3.2) take place.
Now let us consider another set of partial balance equations

p(y,m)Ai(y, N) = ply, N + ei)(ni + Dpily) , i=1,....s.
The substitution of (3.4) yields

N N +e;
Ay = — TR hyn. @)
IT ng!r™ (n; + )1 [T nglr™
i=1 =1

Since the denominators of the left and right part of (3.7) are equal
V(N)v;(N) =V (N +¢;) . (3.8)

The last equality must be true for any cases of 7 and N and hence (3.3)
takes place.
The last set of partial balance equations

also yields an expression equivalent to (3.8)
V(N) = V(N - ez)vl(N) .

Sufficiency. Now we will investigate the case of the general service
times distribution to prove that the considered system possesses an in-
variance property. Our reasoning will be based on the general theory of
insensitivity of stationary characteristics for a generalized semi-Markov
process [2, 6]. The stochastic processes of this type are constructed by
extending the starting state of space in order to use the techniques of
Markov processes to study the initial object.

According to the terminology used in [2] the active events associated
with the state (y, N) of the process 7(t) are the following
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1. Services of customers at busy servers. The processing rate is u;(y).
2. Expectation of new customer arrival. The processing rate is A;(N).

3. Expectation of the transition of the £(¢) random process. The pro-
cessing rate is gy, .

According to our starting assumptions the service of customers at busy
servers are non-exponential active events among those enumerated above.
Hence one may associate the following labels to the transitions of the
random process 1(t). The system may reach the following points from the
point (y, N):

> (y, N + e;) with the rate X\;(y, N). The label of the corresponding
transition is NV;

> (y, N —e;) with the rate n;u;(y). The label is N — e;;
> (y', N) with the rate gy, . The label is N.

The transitions which allow reaching point (y, N) were described
above. The corresponding label is N for the transitions (y, N + ¢;) —
(y,N) and (y',N) — (y, N). The transition (y, N —e;) — (y, N) has the
label (N — ;).

Now according to the main result of [2] we formulate the restricted
flow equations (RFE). The RFE means that the flow moving into the
point through the transitions with some fixed label is equal to the flow
moving from the point through the transitions with the same label. For
the considered queueing scheme the RFE are the following?

Plu,m) | 3N N) + 3 ar | =

yZy'

=y, N+e)(ni+ Dwily) + > oy, Nayy  (3.9)
=1 y'#y

2D. Y. Burman [2] notes that restricted flow equations in many contexts are the
same as the partial balance equations.
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The substitution of (3.4) as p(y, N) in (3.9)—(3.10) turns RFE to equal-
ity if the parameters of the system satisfy conditions (3.1), (3.2) and (3.3).
This means that under the theorem conditions global balance equations
and restricted flow equations have the identical solution and hence ac-
cording to [2] we can guarantee the invariance property for steady state
distribution of (). O

4 Discussion

In the previous section we have illustrated what the condition (3.3) means.
Now we are going to discuss the sense of the conditions (3.1) and (3.2).
These conditions allow the above-mentioned decomposition of the steady
state distribution

p(y,N) =myP(N) . (4.1)

Let us consider random time change

= / 9(£(6))dg .
0

According to (3.2) for the new time ¢* the service will be done with the
constant rate. After the time change the service rate depends only on the
number of server groups and the mean service time is equal to 7;. The
arrival process parameters are also to be transformed. For the time t*
according to (3.1)

Xl N) = 9(y)

= V; (N) .

Now it is evident that under conditions (3.1) and (3.2) the state of
the system processes independently over time t*. Note that considered
assumptions mean that the “utilization factor”® (in general sense) of the

3Traditionally the utilization is treated (for instance for G/G/1 queue) as a product
of average arrival rate times the average service time each customer requires. In the
considered case these two parameters vary randomly and therefore we have quoted the
term. We mean here a function of “utilization” which depends on ¢ and N.
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queueing system also does not depend on the state of the random envi-
ronment. A possible actual example of this case is a system which reacts
to the external factors. Such a system increases the service ability if the
arrival flow rate increases or decreases so that if arrival flow weakens it
will keep some of the performance characteristics at the given level. We
have proved that the decomposition (4.1) holds if and only if the function
9(y) exists and satisfies the theorem conditions. The condition (3.3) does
not affect the decomposition correctness but it is necessary to hold the
invariance property. A full combination of these conditions provides the
existence of an explicit analytical solution.

Assume that parameters g(y) = const. This case reduces the con-
sidered problem to the general blocking scheme investigated by I. Ko-
valenko [4, chapter 5] and so does the condition (3.3). In the paper [8]
the reduced scheme is also considered with regards to the internal struc-

ture of the customers. The special case of the function X\;(y, N) (i.e.
k]

Ai = Ay, Y. n;)) was analyzed in [3]. For the case conditions (3.1) and
i=1
(3.2) one can transformed formula (3.4) to the form given in [3].

5 Conclusion

In this paper we have studied the class of queueing blocking models involv-
ing the random environment. The queueing scheme under investigation
consists of two parts. These are the external stochastic process (environ-
ment) and the service system. The random environment is treated as an
ergodic discontinuous Markovian process. The service system is a hetero-
geneous multichannel queue with loss and state dependent arrival. The
analysis was done in two directions. The first is to establish the necessary
and sufficient conditions under which the model allows decomposition.
The second is to investigate the invariance property of the model.

With these aims we have formulated and proved the theorem on the
existence of an analytical product form for the joint steady state distri-
bution of the state of the queueing system and the state of the random
environment. The distribution is obtained in the analytical form. To
prove the invariance property we have based the argument on the general
theory of insensitivity for the generalized semi-Markov processes.



96

Olga I. Bogoiavlenskaia

References

[1]

2]

3]

[4]

[7]

8]

Borovkov A. A. Stochastic Processes in Queueing Theory. Springer,
New York, 1976.

Burman D. Y. Insensitivity in queueing systems. Adv. Appl. Prob.,
No 13, pp. 846-859, 1981.

Falin G. P. A heterogeneous blocking system in a random environ-
ment. J. Appl. Prob., No 33, pp. 211-216, 1996.

Gnedenko B. V., Kovalenko I. N. Queuing theory. Jerusalem: Israel
Program for Scientific Translation, 1968.

Kelly F. Reversibility and Stochastic Networks. Wiley, New York,
1979.

Schassberger R. Insensitivity of steady-state distribution of gener-
alized semi-Markov process with speeds. Ad. Appl. Prob., No 10,
pp. 836-851, 1978.

Sztrick J. On the heterogeneous M /G [n blocking system in a random
environment. J. Operat. Res. Soc., No 38, pp. 57-64, 1987.

Bogoiavlenskaia O. I. Access System Modeling by Queues with Com-
pound Customers. Proceedings of FDPW’97-98, vol. 1, Petrozavodsk
University Press, Petrozavodsk, pp. 88-111, 1998.



