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Decomposition of the Blocking Queueing Model 47In the telecommunication area these models undoubtedly are of greatinterest, as they allow a series of practically important interpretations.The most obvious examples of the case are systems whose packets orconnections arrival rate, service rate or service scheduling may changeduring the observation period. These models also allow to investigatethe cases of server breakdown or the rush hour phenomena. Certainlythe set of possible interpretations is much wider than the given examplesdescribe.Usually the queues whose parameters vary randomly over time arenamed queues involving in a random environment. Typically these modelspossess a high complexity. Therefore the corresponding analysis raisesigni�cant challenges and results are often cumbersome and insu�cient.Nevertheless, there is a class of blocking queuing systems in a randomenvironment which allows obtaining explicit analytical solutions. In thecases one may acquire the exact product forms for the system's importantcharacteristics like joint distribution of the state of a random environmentand the busy servers number. At the same time, the comparatively simpleanalytical results are obtainable only under special restrictions on theparameters of arrival and departure processes.Another important fact is that some of the models mentioned abovepossess the invariance property (see for instance [3]). This is also a sig-ni�cant direction of the analysis since the invariance property widens theusability of the model.The model considered in this paper might be treated as a generaliza-tion of the queuing blocking system investigated in [3] and [7]. We analyzea general heterogeneous blocking system in a random environment withstate dependent arrival. We have formulated the necessary and su�cientconditions which allow presenting the joint steady state distribution ofthe external environment state and the state of the system in an explicitproduct form. The state of the system is formulated as a vector whichre
ects the nature of the system's heterogeneity. We use a random ergodicMarkovian process with discrete space of states as a model of the externalenvironment. The ergodic property of the process allows us to considerthe steady state characteristics of the whole model.The rest of the paper is organized as follows. Section 2 contains thedescription of the queuing system under investigation and the formaliza-tion of the problems considered. The necessary and su�cient conditions



48 Olga I. Bogoiavlenskaiawhich provide the existence of the product forms for the distribution in-troduced in section 2 are formulated in theorem in section 3. The proofof the theorem also shows that the theorem conditions provide the invari-ance property for the model and the distribution obtained in the productform does not depend on the service times distribution. Section 4 in-cludes some remarks and discussion. Using simple random time change,we present an extended detailed analysis and interpretation of the estab-lished conditions.2 Description of the ModelThe considered model consists of two parts. The �rst is an externalenvironment and the second is the same service system. The externalenvironment is described as an ergodic continuous time Markovian pro-cess �(t) with a discrete state of space Y and the rates of the transi-tions qyy0 : y; y` 2 Y . The steady state distribution of �(t) is set as asequence f�ygy2Y .The queue consists of several groups of the servers. All servers ina group are of the same service ability. Let us de�ne the state of thesystem as vector N , ni 2 N; i = 1 : : : s where s is the general numberof device groups and ni is the number of busy servers in a group i. If thesystem is found in the state N at a time moment t, then the probabilityof new customer arrival inside the term t + �t in the group i is de�nedas �i(y;N)�t + o(�t), where y 2 Y . The probability of two or morecustomers arriving inside the term �t has the order o(�t). Let us denotethe number of servers in the group as mi. If the customer arrives in theservice group, it chooses a free server arbitrarily.The customer service times are realizations of the random variables �iand depend on the number of group which serves the customer and thestate of the external environment. The service rates are correspondinglyde�ned as �i(y). We do not specify the service times distribution function,so any function may be assumed.If the customer arriving in the service group �nds all its servers busy,it is lost. Let us name the described queue �env (Figure 1).Let us also associate with the state of the system the random pro-cess �(t) = f�(t); N(t)gt>0, where N(t) is the state of the service systemat a time t. Let Q denote the set of vectorsN that the states of the system
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Figure 1. Queueing system �envallow. The space of states of the process �(t) is a union of set Y and setQ. The steady state distribution of the process �(t) always exists due tothe general theorems formulated by A.Borovkov [1]. We will consider thefollowing limitsp(y;N) = limt!1Pr(�(t) = y ; N(t) = N) :The limits de�ne the steady state distribution of �(t).



50 Olga I. Bogoiavlenskaia3 The main resultAssume that there is a function g(y) such that�i(y;N) = g(y)vi(N) (3.1)and a set of constants f�igsi=1 such that�i(y) = g(y)�i : (3.2)Also assume that vi(N) satis�es equalityn1+���+nsYl=1 vil  l�1Xm=1 �1;im ; : : : ; l�1Xm=1 �s;im! == n1+���+nsYl=1 vj0l  l�1Xm=1 �1;i0m ; : : : ; l�1Xm=1 �s;i0m! ; (3.3)where fn1; : : : ; nsg is any available vector N 2 Q; fi1; : : : ; in1+���+nsg andfi01; : : : ; i0n1+���+nsg are any two set and �ij = 1 if i = j or �ij = 0 if i 6= j.Formula (3.3) means that in average customers do not prefer a par-ticular group of servers. For all vector R 2 Q so that ri � ni ,i = 1; : : : ; j � 1; j + 1; : : : ; s , and rj + 1 � nj , this condition may bereduced to the following one:vi(N)vj(N + ei) = vj(N)vi(N + ej) ;i.e. any way of accumulation of the product V(N) gives the equal resultor the results di�er smaller than o(�t).Theorem 1. The random process �(t) has the steady state distribu-tion of the following formp(y;N) = p0�y V (N)sQi=1 ni!�nii ; (3.4)if and only if �i(y;N) and �i(y) satisfy (3.1), (3.2) and (3.3). Here p0 isa normalizing constant and V (N) is the left (right) part of (3.3).



Decomposition of the Blocking Queueing Model 51Proof. Necessity. Let us consider the case of exponentially distributedservice times. The distributions parameter is �i(y)1. The case �(t) is aregular Markovian process. If (3.4) is the steady state distribution of �(t)it must satisfy the global balance equations (i.e. Kolmogorov equations).The process may reach state (y;N) only from the states:B (y;N � ei) with the rate �i(y;N);B (y;N + ei) with the rate �i(y)(ni + 1);B (y0; N) with the rate qy0y.Hence the global balance equations system is�p(y; 0) sXi=1 �i(y; 0) + sXi=1 �i(y)p(y; 0 + ei) + Xy02Y qy0yp(y0; 0) = 0 (3.5)sXi=1h�i(y;N � ei)p(y;N � ei)� (�i(y;N)I (ni) + ni�i(y))p(y;N) ++ (ni + 1)�i(y)p(y;N + ei)i+ Xy02Y qy0yp(y0; N) = 0 ; (3.6)where I (ni ) is 0 if ni = mi and 1 otherwise. Equations (3.5) describe thesystem's behavior if it is idle. Equations (3.6) are valid for all the rest ofthe states.Let us also examine the partial balance equations [5]. The followingone allows deriving conditions (3.1) and (3.2)p(y;N)Xy 6=y0 qyy0 = Xy0 6=y p(y0; N)qy0y :The last formula presents the Kolmogorov equation for the process �(t),which has a unique solution up to the constant multiplier. The solutionis the steady state distribution �y. Hencep(y;N) = �yP (N) ;1Actually in general case, the service times distribution is the convolution of expo-nential distributions with parameters �i(y), �i(y0), �i(y00) etc., since the state of theenvironment may change during the customer service time.



52 Olga I. Bogoiavlenskaiawhere P (N) is expression independent on y. To satisfy the global balanceequations this expression must be a product whose factors are of thefollowing form �i(y;N)�i(y)in correspondence with N . If products P (N) for all N are independentof y then any of those factors must be independent of y and hence condi-tions (3.1) and (3.2) take place.Now let us consider another set of partial balance equationsp(y; n)�i(y;N) = p(y;N + ei)(ni + 1)�i(y) ; i = 1; : : : ; s :The substitution of (3.4) yieldsV (N)sQi=1ni!�nii vi(N) = V (N + ei)(ni + 1)�i sQi=1ni!�nii (ni + 1)�i : (3.7)Since the denominators of the left and right part of (3.7) are equalV (N)vi(N) = V (N + ei) : (3.8)The last equality must be true for any cases of i and N and hence (3.3)takes place.The last set of partial balance equationsp(y;N)ni�i(y) = p(y;N � ei)�i(y;N) ; i = 1; : : : ; salso yields an expression equivalent to (3.8)V (N) = V (N � ei)vi(N) :Su�ciency. Now we will investigate the case of the general servicetimes distribution to prove that the considered system possesses an in-variance property. Our reasoning will be based on the general theory ofinsensitivity of stationary characteristics for a generalized semi-Markovprocess [2, 6]. The stochastic processes of this type are constructed byextending the starting state of space in order to use the techniques ofMarkov processes to study the initial object.According to the terminology used in [2] the active events associatedwith the state (y;N) of the process �(t) are the following



Decomposition of the Blocking Queueing Model 531. Services of customers at busy servers. The processing rate is �i(y).2. Expectation of new customer arrival. The processing rate is �i(N).3. Expectation of the transition of the �(t) random process. The pro-cessing rate is qyy0 .According to our starting assumptions the service of customers at busyservers are non-exponential active events among those enumerated above.Hence one may associate the following labels to the transitions of therandom process �(t). The system may reach the following points from thepoint (y;N):B (y;N + ei) with the rate �i(y;N). The label of the correspondingtransition is N ;B (y;N � ei) with the rate ni�i(y). The label is N � ei;B (y0; N) with the rate qyy0 . The label is N .The transitions which allow reaching point (y;N) were describedabove. The corresponding label is N for the transitions (y;N + ei) !(y;N) and (y0; N)! (y;N): The transition (y;N � ei)! (y;N) has thelabel (N � ei).Now according to the main result of [2] we formulate the restricted
ow equations (RFE). The RFE means that the 
ow moving into thepoint through the transitions with some �xed label is equal to the 
owmoving from the point through the transitions with the same label. Forthe considered queueing scheme the RFE are the following2p(y; n)24 sXi=1 �i(y;N) + Xy 6=y0 qyy035 == sXi=1 p(y;N + ei)(ni + 1)�i(y) + Xy0 6=y p(y0; N)qy0y (3.9)p(y;N)ni�i(y) = p(y;N � ei)�i(y;N) ; i = 1; : : : ; s : (3.10)2D. Y. Burman [2] notes that restricted 
ow equations in many contexts are thesame as the partial balance equations.



54 Olga I. BogoiavlenskaiaThe substitution of (3.4) as p(y;N) in (3.9){(3.10) turns RFE to equal-ity if the parameters of the system satisfy conditions (3.1), (3.2) and (3.3).This means that under the theorem conditions global balance equationsand restricted 
ow equations have the identical solution and hence ac-cording to [2] we can guarantee the invariance property for steady statedistribution of �(t). �4 DiscussionIn the previous section we have illustrated what the condition (3.3) means.Now we are going to discuss the sense of the conditions (3.1) and (3.2).These conditions allow the above-mentioned decomposition of the steadystate distribution p(y;N) = �yP (N) : (4.1)Let us consider random time changet� = tZ0 g(�(�))d� :According to (3.2) for the new time t� the service will be done with theconstant rate. After the time change the service rate depends only on thenumber of server groups and the mean service time is equal to �i. Thearrival process parameters are also to be transformed. For the time t�according to (3.1) ��i (y;N) = �i(y;N)g(y) = vi(N) :Now it is evident that under conditions (3.1) and (3.2) the state ofthe system processes independently over time t�. Note that consideredassumptions mean that the \utilization factor"3 (in general sense) of the3Traditionally the utilization is treated (for instance for G=G=1 queue) as a productof average arrival rate times the average service time each customer requires. In theconsidered case these two parameters vary randomly and therefore we have quoted theterm. We mean here a function of \utilization" which depends on i and N .



Decomposition of the Blocking Queueing Model 55queueing system also does not depend on the state of the random envi-ronment. A possible actual example of this case is a system which reactsto the external factors. Such a system increases the service ability if thearrival 
ow rate increases or decreases so that if arrival 
ow weakens itwill keep some of the performance characteristics at the given level. Wehave proved that the decomposition (4.1) holds if and only if the functiong(y) exists and satis�es the theorem conditions. The condition (3.3) doesnot a�ect the decomposition correctness but it is necessary to hold theinvariance property. A full combination of these conditions provides theexistence of an explicit analytical solution.Assume that parameters g(y) � const. This case reduces the con-sidered problem to the general blocking scheme investigated by I. Ko-valenko [4, chapter 5] and so does the condition (3.3). In the paper [8]the reduced scheme is also considered with regards to the internal struc-ture of the customers. The special case of the function �i(y;N) (i.e.�i = �(y; sPi=1ni)) was analyzed in [3]. For the case conditions (3.1) and(3.2) one can transformed formula (3.4) to the form given in [3].5 ConclusionIn this paper we have studied the class of queueing blocking models involv-ing the random environment. The queueing scheme under investigationconsists of two parts. These are the external stochastic process (environ-ment) and the service system. The random environment is treated as anergodic discontinuous Markovian process. The service system is a hetero-geneous multichannel queue with loss and state dependent arrival. Theanalysis was done in two directions. The �rst is to establish the necessaryand su�cient conditions under which the model allows decomposition.The second is to investigate the invariance property of the model.With these aims we have formulated and proved the theorem on theexistence of an analytical product form for the joint steady state distri-bution of the state of the queueing system and the state of the randomenvironment. The distribution is obtained in the analytical form. Toprove the invariance property we have based the argument on the generaltheory of insensitivity for the generalized semi-Markov processes.
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