FDPW’99 Volume 2, 1999

Technical Issues of Real-Time
Network Simulation in Linux

Andrei V. Gurtov

Department of Computer Science, University of Helsinki
Department of Computer Science, University of Petrozavodsk

P.0.Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland

E-mail: gurtov@cs.helsinki.fi

Abstract

Real-time network simulation requires dealing with miscella-
neous technical problems to achieve a correct and timely execution.
Ignoring those issues can render a valid model useless, because its
implementation would produce erroneous results. This paper iden-
tifies and discusses the problems specific for a Linux operating sys-
tem on the x86 architecture. A problem of accurate event schedul-
ing in a simulation process without disturbing other processes is the
most important and is considered in detail. Several solutions to this
problem are evaluated by measurements. The results show that no
single solution fits all criteria, but the most appropriate method
can be selected according to the goals of a simulation study.

© Andrei V. Gurtov, 1999

Real-Time Network Simulation in Linux 147

If you’re trying to solve real-time sort of problems,
you are dealing with some fairly thorny technical issues.

B. Gallmeister, a vice-char of POSIX 4. [6]

1 Introduction

Studying the behavior of Internet protocols over a real data link or net-
work is often costly or, if a system is only in a development stage, impos-
sible. An alternative way is to build a model that emulates the network
of interest and then using this model to measure the performance of real
networking applications.

An understandable desire 100 , 1 , ,
of any modeler is to concen- /
trate the effort on developing y
a conceptual model of the 80 : : 7 7
system under study and to ;
treat the computer as a per-
fect implementation tool that
accurately follows the event
schedule. Unfortunately, this
does not work, as most off-the- ,
shelf personal computers and 20 “ : : .
UNIX-like operating systems
are not designed for real-time o : : ; :
use, have coarse timer resolu- 0 20 40 60 80 100
. Requested line rate (kbps)
tion, and are prone to delays
caused by the hardware (a disk Figure 1. Actual versus requested
or network access) and by the line rate. Measured with WINES
operating system. Especially simulator using 100-byte packets.
in a multi-process environment, Sleeps are performed using a stan-
keeping a real-time schedule dard Linux system call
can be hard, because a simu-
lation process has to compete with other processes for system resources.

Consider Figure 1, for example. It presents performance results from
the first version of the Wireless Network Simulator (Wines), a tool for
studying the behavior of network protocols over GSM, developed at the
Department of Computer Science, University of Helsinki. Wines emulates

60 |- : 5 : -

40 2 J

Actual line rate (kbps)
AN

148 Andrei V. Gurtov

a slow wireless link by delaying data packets, and the actual line rate
maintained by the simulator is expected to be the same as requested in a
configuration file. In practice, as can be seen from the figure, the actual
line rate is lower than the requested line rate. The error is produced
because the simulator relies on a standard Linux system call to perform
accurate delays.

Appropriate services of an operating system for real-time applications
is an active research area. An important landmark is POSIX.4 specifi-
cations for portable real-time programming [6]. However, many related
issues are highly specific for a particular hardware and operating system.

In this paper we discuss technical issues of real-time network simula-
tion on a Linux operating system run on a PC!. A problem of accurate
event scheduling in a simulation process without disturbing other pro-
cesses is the most important and is considered in detail. Most related
work is concentrated only on achieving the highest possible accuracy, but
ignoring practical factors that are sometimes decisive for the usage of
a method. In this paper, we take into consideration such issues as the
amount of modifications needed in the Linux kernel, and transparency of
a method for applications.

Several solutions to the problem of accurate delay are evaluated by
measurements. The results show that no single solution fits all criteria,
but the most appropriate method can be selected according to the goals
of a simulation study. Other problems are outlined and possible solutions
to them are suggested, but an extensive evaluation is the subject of future
work. Details not present in this paper due to the lack of space can be
found in [8].

2 Seawind real-time simulator

A Software Emulator for Analyzing Wireless Network Data transfers (Sea-
wind) is developed as a tool for exploring the behavior of real Internet
protocols (mostly TCP) over wireless datalink services provided by GSM,
GPRS, and HSCSD [9]. It may be classified as a real-time distributed
functional simulator [2]. The simulation system consists of several simu-

IWe use the term PC to refer to any personal computer based on i386 and its
successors

Real-Time Network Simulation in Linux 149

lation processes connected in a pipeline, so that every simulation process
corresponds to some subsystem of the modeled network. Simulation pro-
cesses can be distributed on several computers and exchange messages
using unmodified TCP or UDP protocols.

The simulation process is designed based on the Mowser library [1],
that among other tools includes a generic event dispatcher (mev). A
Mowser client can register event handlers for a number of specific events
(a descriptor is ready for writing or reading, an alarm goes off, a process
receives a signal, etc.). Unfortunately, mev was not initially designed to
be a real-time scheduler and was never used in this way. Experience with
Seawind will show the existing problems, and appropriate enhancements
could be made to mev in the future.

Several simulation processes are managed with a control tool via a
graphical user interface. The client and the server are normal Internet
hosts that run a networking application over the Seawind system that
tunnels packets possibly delaying, modifying or dropping them. The back-
ground load can be emulated either artificially or explicitly with external
load generators. The configuration of the simulation process is read before
starting a test and is not a problem, but logging may happen during an
experiment run and can cause undesired delays.

Two factors imply that it is not wise to demand the usage of a modified
Linux kernel for all experiments. First, as a rule, every simulation process
should be run on a separate PC. Second, the Seawind simulator is used
in several organizations and they may not have resources to install a
modified Linux system. In this paper we outline the cases in which the
kernel modification is a must, and cases where the required accuracy can
be achieved by suggested methods in the user software.

3 The problem of an accurate sleep time

3.1 Definition of the problem

The standard Linux kernel on PC provides a process sleep time resolution
of 10 ms with a minimum of approximately 20 ms. As a rule, the actual
sleep time is 10 ms more than requested. In the later sections we will see
reasons for such coarse behavior, but first we consider the implications of
these facts to our real-time network simulator.

150 Andrei V. Gurtov

Figure 2 shows the 200
delay per packet to Ll | - %gg‘;{gﬁ%ﬁ%
emulate a slow link of a !
given line rate. The de- ‘
lay value is determined
by the line rate and
by the packet size. To
demonstrate limitations
of the standard Linux
sleep method, let us
consider modeling a
GPRS data link. Con-
ceptually, three main o
levels of model granu- e rete (0ps)
larity can be identified: Figure 2. The computed delay per packet
the IP packet layer versus requested line rate
(typical packet size of
1000 bytes), LLC (typical packet size of 200 bytes), and RLC (typical
packet size of 25 bytes).

Taking into account the accuracy of sleeps, and observing Figure 2, we
see that in standard Linux modeling of RLC is out of question, LLC can
be modeled with meaningful results up to 20 kbps?, and only the IP-level
seems to be manageable for higher line rates. In practice, even IP-level
modeling would give inaccurate results, because sleeps are always greater
than requested and the accumulated delay would result in the line rate of
the emulated link to be lower than requested.

In modeling a data link some amount of variation of delay per packet is
acceptable, and sometimes even natural, because it is also present on the
real link. However, the errors in individual sleeps should not accumulate,
or otherwise the results would be biased.

Events for downlink and uplink channels of the Seawind simulation
process are scheduled concurrently. Because of this an average sleep re-
quest would be half of that is given in Figure 2. Note also, that it only
accounts for slow down sleeps, so if a process is interrupted during the
sleep to process some event, for example background load packet arrival,
and then goes to sleep again, the error may be much larger.

80

Slow down delay per packet (ms)
5
8
.

& @
S 3
T T

N
S
T

120 140 160 180 200

2We assume 1 kbps is 1000 bps, but 1”Kbyte is 1024 bytes.

Real-Time Network Simulation in Linux 151

3.2 Formalization of the problem

In this section we give a number of numerical parameters, that can be used
in the comparison of different methods of accurate sleep. All sleep requests
can be roughly divided into two groups. The first group consists of one-
occurrence sleeps that are not dependent on each other. An example is a
random delay modeling the effect of some rare event, for instance, a cell
change. The accuracy of such sleeps is more difficult to improve, but on
the other hand such sleeps tend to be rare and large in value, thus the
relative error for such requests is small.

The second group consists of sleeps belonging to a single sleep thread
or, in other words, a series of sleep requests. An example is emulation
of a slow link, when a delay is done per packet of a data flow. Some
difference between the requested and actual sleep time per one sleep in a
thread is acceptable, as long as, on the average, the actual sleeps are the
same as requested. This is sometimes called error dumping [5]. The value
of individual requests and the length of the series is often not known in
advance.

Let z; be the requested sleep times belonging to the same series and
let y; be the actual times elapsed for the ith request, ¢ = 1,...,n for
some n € N. We define the absolute sleep error as

i =Yi — T
and the relative sleep error as

Yi —Ti _ Qi
r; = = —.
Zi Zi

If Z;,1 =1,... ,n are random variables, we denote the sample mean as
n

7=y

i=1

SN

and sample variance as
i (Zi - 2)°
~ n-1 '
Naturally, we wish a; and r; to be constantly zero, that is equivalent
to having zero sample sample mean and variance. We will use the sample

152 Andrei V. Gurtov

mean and variance of the absolute and relative error as a rough estimate
of how good the suggested methods are. It is acceptable to have the small
non-zero variances because they only reflect the deviation of individual
sleep requests that are often present in the real system as well. However,
the means should be kept as close to zero as possible because the indicated
bias directly affects the final results.

The relative error shows how well a method approximates an area of
the smaller sleep request values, because even a small absolute error there
would result in a large relative error. On the other hand, the absolute error
gives the way the method behaves “on average” and allows to estimate
how large an error is introduced in the final results.

Table 1 gives a summary of error statistics for sleep using a select ()
system call on a standard PC Linux.

Table 1. Statistics for different sleep techniques. Results are measured
based on 1000 sleep requests are uniformly distributed in 0 ... 100 ms

absolute absolute relative relative
method error error error error
sample sample sample sample

mean variance mean variance
standard select () 14.50 10.49 0.85 4.39
interrupts RTC 0.00 0.00 0.00 0.00
interrupts HZ 0.41 0.25 0.04 0.01
slack variable 0.01 38.56 -0.09 0.27
busy waiting 0.02 0.11 0.00 0.00

3.3 Background of the problem

The standard Linux kernel sets the frequency of the timer interrupt
to 100 Hz at boot time that corresponds to 10 ms interval between inter-
rupts. When a process requests to be temporarily suspended and woken
after some specified time, a timer structure is created and added to a list
maintained by the kernel.

Real-Time Network Simulation in Linux 153

At each interrupt, the kernel increments a number of ticks by one. The
interval length between timer interrupts is called a jiffy. Since the kernel
checks for expired timers only when a timer interrupt occurs, the smallest
meaningful sleep request time is one jiffy. In fact, the POSIX standard
for select system call states that the process must sleep at least the time
requested. To guarantee this, a kernel adds one jiffy to the requested
sleep time in jiffies. That means the smallest sleep time in practice is two
jiffies?.

Fortunately in the modern Linux kernel gettimeofday provides nearly
microsecond accuracy employing a time-stamp register (TSR) available on
Pentium processors that is incremented on each clock cycle. Earlier kernel
versions returned the time-of-day value updated only at a timer interrupt.

3.4 Possible solutions

Methods of solving the problem of accurate sleeps can be divided into
three groups:

1. Using some mechanism to get finer clock resolution.
2. Compensating the difference in the next sleep request.
3. Busy waiting.

In the first group, the frequency of timer interrupts is increased ei-
ther permanently or temporarily, and interrupts are handled either by
the kernel or by the user process. In the second group, the requested
sleep time is changed to reflect the error made in previous sleeps or to
match the expected actual sleep time. In the third group, the accurate
gettimeofday () call is used to actively wait until the requested time has
elapsed.

Methods are then compared using the following evaluation criteria:

e high accuracy (small absolute and relative error),
e transparency for applications,
e load on the CPU,

e amount of modifications needed to the kernel,

3In kernel versions 2.2 and later the smallest sleep time is reduced to one jiffy.

154 Andrei V. Gurtov

3.5 Measurement specifications
3.5.1 Measurement model

Initially the following parameters were identified as possibly affecting the
results:

the pattern of sleep requests by the application,

the overall system load,

the amount of computation in the application,

the length of the sleep series.

After consideration, a decision was made to use a long series of uni-
formly distributed in 0 ms to 100 ms requests on unloaded system. The
pattern of requests is different for each application and thus difficult to
generalize. The overall system load may have different effect depending
on the priority of the real-time application. Computation time between
sleep requests can be withdrawn from the sleep time requested and thus
should not affect the results. The length of the sleep series was chosen
of 1000 requests. This is longer than most sleep series in practice, but
allows for better statistics.

The sleep request series was generated by a C-program using standard
Linux random() call. The series was the same for all tested methods. A
number of shell scripts and short programs in C-language were written
to compute the relative and absolute error, sample mean and variance
and to plot figures. All 1000 samples were used for statistics, but only
the 100 first samples are shown in figures to keep the size of graphics files
manageable.

3.5.2 Test environment

Performing tests required three different Linux kernels to be installed on a
single machine. In Linux it is possible to keep multiple kernel boot image
files and switch between then on a system boot. A convenient interface is
achieved using (Linux Loader) LILO tools.

Software. Linux kernel 2.0.36, Computer Science Linux distribution
(modified Slackware), gce 2.7.2.3, libch library, ELF executables.

Hardware. Pentium IT 450 MHz CPU, 128 MB RAM, 2 FUJITSU
4325 MB HDDs.

Real-Time Network Simulation in Linux 155

3.6 Methods of accurate sleep with kernel support
3.6.1 Counting RTC interrupts

Linux provides a driver to control the RTC chip, so the interrupt rate of
the RTC can be set with a ioctl() calls and the process is informed of
the interrupt occurrence using read() or select() system calls on the
/dev/rtc device.

The support for RTC in the kernel is optional and can be activated
when the kernel is compiled. At our department installation this option
is disabled, and a sample kernel had to be compiled with RTC support
enabled to perform tests.

Figure 3(b) shows that this method produces fairly accurate results. In
fact, as can be seen from Table 1, all actual sleeps are exactly as requested
when rounded to milliseconds. System tools indicated 0% CPU utilization
when running the test process.

A negative side of this method is that it requires a replacement of the
sleep routine in the applications. The Mowser library would need a major
change to be able to use the RTC interface.

3.6.2 Increasing the interrupt frequency of the kernel

The frequency of timer interrupts, and thus accuracy of select call is af-
fected by the value of the HZ constant in kernel sources. It is defined in
the include/asm-i386/param.h file. The default value is 100, but it is
possible to change within the range of the clock chip capabilities. Increas-
ing the frequency of clock ticks has a negative impact in CPU overhead.
As the Seawind system aims at approximately 1 ms resolution, the value
of HZ of 1024 can be considered appropriate.

A sample kernel was compiled with this feature and measurements
were run. Figure 3(c) and Table 1 show the results. The main advantage
of this method is the complete transparency for applications.

3.6.3 UTIME patch

UTIME is an extensive modification of the kernel that aims at providing
accurate timing without putting an excess load on the system. It is done
by increasing the frequency of the timer only temporarily, only when this
is actually needed, because even if events are scheduled with microsecond

120 T T T T 100

7
P 80

©
=}
T
¥
*
*
N
i

60

40

Actual sleep time(ms)
IS o
o o
T T
*
N
AN
1 1
Actual sleep time(ms)

x 7 20
20 foombme- - : H <

o
=}

N
S

Actual sleep time(ms)

0 i i i i 0

i i i i 0

0 20 40 60 80 100 0 20 40 60 80 100

Requested sleep time (ms)

(a) Basic case

Requested sleep time (ms)

(b) Counting RTC interrupts

‘ ‘ ‘ A
£ « 1
d
P
rd
/‘f .
A&
#“/ 4
0 2‘0 4‘0 6‘0 8‘0 100

Requested sleep time (ms)

(c) Frequent kernel interrupts

Figure 3. Performance of different sleep techniques. A dashed line shows the optimal behavior. Graphs

contain desired vs. requested sleep

time for the first 100 requests

9G1

AOYINE) * A RIPUY

100

80

@
=}
T

Actual sleep time(ms)
B
o
T

20

Figure 3. (Continue) Performance of different sleep techniques. A dashed line shows the optimal

T T T T

Ve
Ve
ik o
e
7

ook ok ok —

Ve

/
S K B
s/
/
B —
Ve
Ve
* % ek
Ve
7
AKX —
Ve
Ve
* ol
Ve
Fe e A -
Ve
Ve
Ve
Ve
7
i i i i
20 40 60 80 100

Requested sleep time (ms)

(d) Sleep with slack

Actual sleep time(ms)

100

80

60

40

20

i i i

i

20 40 60
Requested sleep time (ms)

(e) Busy waiting

80

100

behavior. Graphs contain desired vs. requested sleep time for the first 100 requests

XNUIT UI UOTJR[NWIS YIOMIDN SWILT,-[edY]

28T

158 Andrei V. Gurtov

resolution they are rarely scheduled every microsecond. Rather than in-
terrupt CPU at the fixed rate, the timer chip is programmed to interrupt
CPU at the time of the earliest scheduled event. This approach yields
good results, and the achieved accuracy is up to 50 s [3].

However, UTIME does a large modification of the kernel, and it can
possibly have some negative side effects. It is not a part of the official ker-
nel that was verified by hundreds of independent people. Another problem
is practical usability: the required patch only installs on the certain ker-
nel version (2.0.34) and is aimed at RedHat distribution. It might also be
considered somewhat an overshot, because currently Seawind needs only
1 ms resolution. For these reasons UTIME was not tested, but perhaps it
will be checked more closely in future.

3.7 Methods of accurate sleep without kernel support
3.7.1 Sleep with slack

The average accuracy of a sleep thread can be improved by measuring the
actual sleep time of the current request and compensating the difference
later with the next sleep request. The interface to the sleep routine is
modified to pass two parameters to the function: the time requested for
a sleep and a pointer to a variable containing slack from the previous
sleep request. The programmer is responsible for separating sleep threads
in the application, and assigning the slack variables to them. The sleep
routine in C-code is given below. The slack variable can contain the
positive or negative value, depending on whether the previous sleeps were
shorter or longer than requested. The slack variable is updated to the
value compensated in the sleep.

int sleep_with_slack(int sleep_ms, int #*slack) {
int slept;
if (sleep_ms-*slack<=0) {
*slack-=sleep_ms;
return 0;
}
slept=ms_sleep(sleep_ms-*slack) ;
xslack-=(sleep_ms-slept) ;
return slept;

Real-Time Network Simulation in Linux 159

This method does not increase the accuracy of a single sleep call, of
course. However, as can be seen from Figure 3(d), actual sleep times are
evenly distributed around the requested time. Table 1 shows that the
absolute error is very low, thus on average the actual sleeps are same as
requested.

The best side of this method is that it can be used on unmodified
kernels. It can be successfully combined with other methods that require
kernel support to further increase the accuracy accounting for deviations
in individual sleep requests.

3.7.2 Sleep with pre-compensation

It is easy to note that the sleep time provided by the unmodified select ()
tends to be larger than requested approximately by the constant compo-
nent of 10 ms plus a variable part that varies from 0 to 9 ms depending
on the least important digit.

In the method we call sleep with pre-compensation a requested sleep
time is decreased by the value of the expected oversleep. This can be done
inside the application or by modifying the sleep routine. For standard
sleep with select () it decreased the errors, but not enough to make this
method useful by itself.

It was interesting to check if pre-compensation would improve the
performance of sleep with slack. In fact, the experiment has shown that
there is no significant difference when pre-compensation is used. At first
it was surprising, but later it was observed that the slack variable tends
to stabilize at the value typically requested by pre-compensation.

3.7.3 Busy waiting

We mentioned in Section 3.3 that the gettimeofday () call provides nearly
microsecond resolution in time. It is possible to wait for an exact time
period by repeatedly calling gettimeofday until the requested time has
elapsed.

However, this approach would not work for an event-driven applica-
tion, as Seawind is. All event handlers must be kept short not to block
the processing of other pending events, and busy waiting inside a handler
is certainly unacceptable. A better solution is busy waiting through the
Mowser dispatcher itself. This is possible because Mowser supports event

160 Andrei V. Gurtov

handlers of different, priorities. In this way a handler mev_later is regis-
tered with a zero timeout and minimal priority. If there are any pending
events, they will be processed first, and then a function for timer event
is called. This function checks if the time of request has already elapsed,
and if not, re-register the handler in the same way.

This method can be used when there is a single process per CPU.
For a multi-process system only very short sleeps can be done in such a
way, otherwise the sleeping process will use up all its CPU quota only for
busy waiting and will be preempted. An advantage of the method is high
accuracy.

Figure 3(e) and Table 1 show the results. For all but one request the
error is zero. This single request well illustrates the shortcoming of this
method, as the probable reason for it is a preemption of the process that
has used up its CPU quota.

4 Other problems

In this section we outline miscellaneous issues that affect the accuracy of
simulation results. All of them need closer consideration, which in turn
requires benchmarking. Some of the problems were already experimented
with, so possible solutions are also given.

4.1 Disk I/O

Seawind processes access the disk for reading configuration and writing
log. All configuration related information is read before starting the ex-
periment and thus should not be a problem.

In Seawind, an experiment consists of repetitions of basic tests (for
example one TCP connection), so the log writing should not cause addi-
tional problems for short basic tests, because the log can be stored entirely
in the main memory during each basic test and written to disk between
basic tests.

For more intensive logging (when, for example, whole packets are
logged) and longer tests the problem remains. A good method of real-
time logging is to keep a number of buffers each of the size of a disk sector
in the main memory, and asynchronously write a full buffer to disk while
filling the other buffers [6]. The appropriate number of buffers should

Real-Time Network Simulation in Linux 161

be determined experimentally. Performance of asynchronous I/O under
Linux needs closer consideration, because it is currently done without
kernel support, but with a separate user thread per each request.

In general, providing a lightweight and predictable I/0 is a fairly dif-
ficult task that requires close consideration and possibly replacement of
some Linux kernel components [4].

4.2 CPU and memory performance

Even if on average occurring events require a small amount of time to
process, situations are possible when several events are scheduled close to
each other. For example, a bunch of background load users have arrived
and need to be processed almost instantly. Some delay in dispatching
events is inevitable in this case, but it is important to find out how large
it is and how it can be accounted for.

The overall system performance can be of concern when the simulation
model involves much computing. The Seawind code would need to be
profiled and analyzed to remove the bottlenecks. In particular, data inside
the simulation process often need to be copied without actually modifying
them. In some cases this can be avoided by more careful programming.

4.3 Clock synchronization

The PC clock chip is accurate to 13 min per year at normal temperature
and a fresh battery [7]. In smaller units, it is approximately 90 ms per
hour. This is large enough to impose problems with the analysis of logging
data, as logging is distributed. Some mechanism should be used to either
find out the offset of each computer’s clock or to synchronize them. A
timesync script is available on all CS department Linux machines. It uses
Network Time Protocol (NTP) to synchronize the clock on a computer
with the clock of the time server.

4.4 Process scheduling

Standard Linux processes use SCHED _OTHER default universal schedul-
ing policy, which aims at optimizing throughput rather than fulfilling
requirements of real-time processes. If besides a simulation process, other
active processes are present on the same computer, it is important that the

162 Andrei V. Gurtov

simulation process is given highest priority so that it cannot be preempted
by other processes. Fortunately, Linux fulfills the POSIX requirements for
soft-real time systems and provides two other scheduling policies for spe-
cial time-critical applications that need precise control over the way in
which runnable processes are selected for execution [6]. In order to deter-
mine the process that runs next, the Linux scheduler looks for the non-
empty list with the highest static priority and takes the process at the
head of this list. All non-real time processes run under the static priority
of 0. In opposite, a real-time process can assign itself a static priority in
the range 0 to 99. All scheduling is preemptive, if a process with a higher
static priority gets ready to run, the current process will be preempted
and returned into its wait list.

For real-time processes two scheduling policies are available, First In
First Out (SCHED_FIFO) and Round Robin (SCHED_RR). SCHED_RR
is a simple enhancement of SCHED_FIFO, the only difference is that in
SCHED_RR each process is only allowed to run for a maximum time
quantum. If a SCHED_RR process has been running for a time period
equal to or longer than the time quantum, it will be put at the end
of the list for its priority. Assigning scheduling policies and priorities
for processes of a given system can be done only based on the exact
functionality of each process.

A computer system used as a platform for running experiments should
be as bare-boned, as possible. In particular, the X server should not be
used, but rather a single textual shell. Care should be taken to remove
miscellaneous system processes and daemons that are not needed for the
real-time processes, but are present on the normal Linux system, because
any such process is a potential source for scheduling distortions for a real-
time application.

4.5 Virtual memory paging

Virtual memory paging can cause unexpected delays in the execution of
real-time processes. In the first place, paging should not happen at all
during the run of an experiment, but in some cases (for example when
log file is kept in the main memory) is possible. To prevent this problem
from occurring, a mlockall system call should be used. It disables paging
for all pages mapped into the address space of the calling process. This

Real-Time Network Simulation in Linux 163

includes the pages of the code, data and stack segment, as well as shared
libraries, user space kernel data, shared memory and memory mapped
files. All mapped pages are guaranteed to be resident in RAM when the
mlockall system call returns successfully and they are guaranteed to stay
in RAM until the pages are unlocked again by munlockall or until the
process terminates.

5 Conclusion

Miscellaneous technical issues are shown to be crucial for a sound imple-
mentation of a real-time network simulator. The most important problem
is to provide a simulation process with an accurate delay mechanism that
does not interfere with other processes. Several methods were evaluated
and their usability was discussed.

The excellent accuracy in sleeps can be achieved by counting RTC
interrupts at the expense of modifications to applications and possibly
to the kernel. Busy waiting provides the high accuracy as well, however,
periodic distortions are possible due to intensive CPU utilization. This
method requires a modification to applications, but not to the kernel.
Increasing frequency of kernel interrupts (HZ) gives high accuracy with
complete transparency for applications, but does require a modified kernel.
Finally, sleep with slack allows for good accuracy on average for longer
sequences of sleep requests on standard kernel with no overhead. However
the programmer has to identify sleep threads in the application.

While no method was found to satisfy all the criteria, strong and weak
sides of each method were identified to make an appropriate choice for
particular purpose of a simulation study. The other important problems
were briefly discussed, but more elaborate research is a subject to further
work.

Acknowledgments

I express my deep gratitude to prof. Timo Alanko for reviewing the paper,
for invaluable help and support, and to Dr. Iouri A. Bogoiavlenski for
advice and encouragement. I thank Aki Laukkanen for useful comments
on the paper.

164

Andrei V. Gurtov

References

[1]

2]

3]

[5]

[6]

[7]

8]

[9]

H. Helin, A. Gurtov, Mowgli Communication Services: Mowser li-
brary. Technical report, University of Helsinki, December 1999.

A. Law, D. Kelton, Simulation modeling & analysis. McGraw-Hill
series in industrial engineering and management science, second edi-
tion, 1991.

B. Srinivasan, A Firm Real-Time System Implementation Using
Commercial Off-The-Shelf Hardware and Free Software. Master of
Science thesis, University of Kansas, 1998.

R. Hill, Improving Linuz Real-Time Support: Scheduling, I/O Sub-
system, and Network Quality of Service Integration. Master of Science
thesis, University of Kansas, 1998.

K. Atkinson, An Introduction to Numerical Analysis. John Wiley &
Sons, 1978.

B. Gallmeister, POSIX.4: Programming for the real world. O’Reilly
& Associates, 1995.

H. Messmer, The Indispensable PC Hardware Book. Addison-Wesley,
third edition, 1997.

A. Gurtov, Technical Issues of Real-Time Simulation in Linuzx. Bach-
elor Thesis, University of Petrozavodsk, 1999.

M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinen, and T. Alanko,
An Efficient Transport Service for Slow Wireless Telephone Links.
IEEE Journal on Selected Areas in Communications, vol. 7, no 15,
pp- 1337-1347, 1997.

