
FDPW'99 Volume 2, 1999Technical Issues of Real-TimeNetwork Simulation in LinuxAndrei V. GurtovDepartment of Computer Science, University of HelsinkiDepartment of Computer Science, University of PetrozavodskP.O.Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, FinlandE-mail: gurtov@cs.helsinki.fiAbstractReal-time network simulation requires dealing with miscella-neous technical problems to achieve a correct and timely execution.Ignoring those issues can render a valid model useless, because itsimplementation would produce erroneous results. This paper iden-ti�es and discusses the problems speci�c for a Linux operating sys-tem on the x86 architecture. A problem of accurate event schedul-ing in a simulation process without disturbing other processes is themost important and is considered in detail. Several solutions to thisproblem are evaluated by measurements. The results show that nosingle solution �ts all criteria, but the most appropriate methodcan be selected according to the goals of a simulation study.
c
 Andrei V. Gurtov, 1999



Real-Time Network Simulation in Linux 147If you're trying to solve real-time sort of problems,you are dealing with some fairly thorny technical issues.B. Gallmeister, a vice-char of POSIX.4. [6]1 IntroductionStudying the behavior of Internet protocols over a real data link or net-work is often costly or, if a system is only in a development stage, impos-sible. An alternative way is to build a model that emulates the networkof interest and then using this model to measure the performance of realnetworking applications.An understandable desireof any modeler is to concen-trate the e�ort on developinga conceptual model of thesystem under study and totreat the computer as a per-fect implementation tool thataccurately follows the eventschedule. Unfortunately, thisdoes not work, as most o�-the-shelf personal computers andUNIX-like operating systemsare not designed for real-timeuse, have coarse timer resolu-tion, and are prone to delayscaused by the hardware (a diskor network access) and by theoperating system. Especiallyin a multi-process environment,keeping a real-time schedulecan be hard, because a simu-
0 20 40 60 80 100

0

20

40

60

80

100

Requested line rate (kbps)

A
ct

ua
l l

in
e 

ra
te

 (
kb

ps
)

Figure 1. Actual versus requestedline rate. Measured with WINESsimulator using 100-byte packets.Sleeps are performed using a stan-dard Linux system calllation process has to compete with other processes for system resources.Consider Figure 1, for example. It presents performance results fromthe �rst version of the Wireless Network Simulator (Wines), a tool forstudying the behavior of network protocols over GSM, developed at theDepartment of Computer Science, University of Helsinki. Wines emulates



148 Andrei V. Gurtova slow wireless link by delaying data packets, and the actual line ratemaintained by the simulator is expected to be the same as requested in acon�guration �le. In practice, as can be seen from the �gure, the actualline rate is lower than the requested line rate. The error is producedbecause the simulator relies on a standard Linux system call to performaccurate delays.Appropriate services of an operating system for real-time applicationsis an active research area. An important landmark is POSIX.4 speci�-cations for portable real-time programming [6]. However, many relatedissues are highly speci�c for a particular hardware and operating system.In this paper we discuss technical issues of real-time network simula-tion on a Linux operating system run on a PC1. A problem of accurateevent scheduling in a simulation process without disturbing other pro-cesses is the most important and is considered in detail. Most relatedwork is concentrated only on achieving the highest possible accuracy, butignoring practical factors that are sometimes decisive for the usage ofa method. In this paper, we take into consideration such issues as theamount of modi�cations needed in the Linux kernel, and transparency ofa method for applications.Several solutions to the problem of accurate delay are evaluated bymeasurements. The results show that no single solution �ts all criteria,but the most appropriate method can be selected according to the goalsof a simulation study. Other problems are outlined and possible solutionsto them are suggested, but an extensive evaluation is the subject of futurework. Details not present in this paper due to the lack of space can befound in [8].2 Seawind real-time simulatorA Software Emulator for Analyzing Wireless Network Data transfers (Sea-wind) is developed as a tool for exploring the behavior of real Internetprotocols (mostly TCP) over wireless datalink services provided by GSM,GPRS, and HSCSD [9]. It may be classi�ed as a real-time distributedfunctional simulator [2]. The simulation system consists of several simu-1We use the term PC to refer to any personal computer based on i386 and itssuccessors



Real-Time Network Simulation in Linux 149lation processes connected in a pipeline, so that every simulation processcorresponds to some subsystem of the modeled network. Simulation pro-cesses can be distributed on several computers and exchange messagesusing unmodi�ed TCP or UDP protocols.The simulation process is designed based on the Mowser library [1],that among other tools includes a generic event dispatcher (mev). AMowser client can register event handlers for a number of speci�c events(a descriptor is ready for writing or reading, an alarm goes o�, a processreceives a signal, etc.). Unfortunately, mev was not initially designed tobe a real-time scheduler and was never used in this way. Experience withSeawind will show the existing problems, and appropriate enhancementscould be made to mev in the future.Several simulation processes are managed with a control tool via agraphical user interface. The client and the server are normal Internethosts that run a networking application over the Seawind system thattunnels packets possibly delaying, modifying or dropping them. The back-ground load can be emulated either arti�cially or explicitly with externalload generators. The con�guration of the simulation process is read beforestarting a test and is not a problem, but logging may happen during anexperiment run and can cause undesired delays.Two factors imply that it is not wise to demand the usage of a modi�edLinux kernel for all experiments. First, as a rule, every simulation processshould be run on a separate PC. Second, the Seawind simulator is usedin several organizations and they may not have resources to install amodi�ed Linux system. In this paper we outline the cases in which thekernel modi�cation is a must, and cases where the required accuracy canbe achieved by suggested methods in the user software.3 The problem of an accurate sleep time3.1 De�nition of the problemThe standard Linux kernel on PC provides a process sleep time resolutionof 10 ms with a minimum of approximately 20 ms. As a rule, the actualsleep time is 10 ms more than requested. In the later sections we will seereasons for such coarse behavior, but �rst we consider the implications ofthese facts to our real-time network simulator.



150 Andrei V. GurtovFigure 2 shows thedelay per packet toemulate a slow link of agiven line rate. The de-lay value is determinedby the line rate andby the packet size. Todemonstrate limitationsof the standard Linuxsleep method, let usconsider modeling aGPRS data link. Con-ceptually, three mainlevels of model granu-larity can be identi�ed:the IP packet layer(typical packet size of 0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Line rate (kbps)

S
lo

w
 d

ow
n 

de
la

y 
pe

r 
pa

ck
et

 (
m

s)

25−byte packets 
200−byte packets
1000−byte packet

Figure 2. The computed delay per packetversus requested line rate1000 bytes), LLC (typical packet size of 200 bytes), and RLC (typicalpacket size of 25 bytes).Taking into account the accuracy of sleeps, and observing Figure 2, wesee that in standard Linux modeling of RLC is out of question, LLC canbe modeled with meaningful results up to 20 kbps2, and only the IP-levelseems to be manageable for higher line rates. In practice, even IP-levelmodeling would give inaccurate results, because sleeps are always greaterthan requested and the accumulated delay would result in the line rate ofthe emulated link to be lower than requested.In modeling a data link some amount of variation of delay per packet isacceptable, and sometimes even natural, because it is also present on thereal link. However, the errors in individual sleeps should not accumulate,or otherwise the results would be biased.Events for downlink and uplink channels of the Seawind simulationprocess are scheduled concurrently. Because of this an average sleep re-quest would be half of that is given in Figure 2. Note also, that it onlyaccounts for slow down sleeps, so if a process is interrupted during thesleep to process some event, for example background load packet arrival,and then goes to sleep again, the error may be much larger.2We assume 1 kbps is 1000 bps, but 1"Kbyte is 1024 bytes.



Real-Time Network Simulation in Linux 1513.2 Formalization of the problemIn this section we give a number of numerical parameters, that can be usedin the comparison of di�erent methods of accurate sleep. All sleep requestscan be roughly divided into two groups. The �rst group consists of one-occurrence sleeps that are not dependent on each other. An example is arandom delay modeling the e�ect of some rare event, for instance, a cellchange. The accuracy of such sleeps is more di�cult to improve, but onthe other hand such sleeps tend to be rare and large in value, thus therelative error for such requests is small.The second group consists of sleeps belonging to a single sleep threador, in other words, a series of sleep requests. An example is emulationof a slow link, when a delay is done per packet of a data 
ow. Somedi�erence between the requested and actual sleep time per one sleep in athread is acceptable, as long as, on the average, the actual sleeps are thesame as requested. This is sometimes called error dumping [5]. The valueof individual requests and the length of the series is often not known inadvance.Let xi be the requested sleep times belonging to the same series andlet yi be the actual times elapsed for the ith request, i = 1; : : : ; n forsome n 2 N . We de�ne the absolute sleep error asai = yi � xiand the relative sleep error asri = yi � xixi = aixi :If Zi, i = 1; : : : ; n are random variables, we denote the sample mean as�Z = nXi=1 Zinand sample variance as nXi=1 (Zi � �Z)2n� 1 :Naturally, we wish ai and ri to be constantly zero, that is equivalentto having zero sample sample mean and variance. We will use the sample



152 Andrei V. Gurtovmean and variance of the absolute and relative error as a rough estimateof how good the suggested methods are. It is acceptable to have the smallnon-zero variances because they only re
ect the deviation of individualsleep requests that are often present in the real system as well. However,the means should be kept as close to zero as possible because the indicatedbias directly a�ects the �nal results.The relative error shows how well a method approximates an area ofthe smaller sleep request values, because even a small absolute error therewould result in a large relative error. On the other hand, the absolute errorgives the way the method behaves \on average" and allows to estimatehow large an error is introduced in the �nal results.Table 1 gives a summary of error statistics for sleep using a select()system call on a standard PC Linux.Table 1. Statistics for di�erent sleep techniques. Results are measuredbased on 1000 sleep requests are uniformly distributed in 0 : : : 100 msmethod absoluteerrorsamplemean absoluteerrorsamplevariance relativeerrorsamplemean relativeerrorsamplevariancestandard select() 14.50 10.49 0.85 4.39interrupts RTC 0.00 0.00 0.00 0.00interrupts HZ 0.41 0.25 0.04 0.01slack variable 0.01 38.56 -0.09 0.27busy waiting 0.02 0.11 0.00 0.00
3.3 Background of the problemThe standard Linux kernel sets the frequency of the timer interruptto 100 Hz at boot time that corresponds to 10 ms interval between inter-rupts. When a process requests to be temporarily suspended and wokenafter some speci�ed time, a timer structure is created and added to a listmaintained by the kernel.



Real-Time Network Simulation in Linux 153At each interrupt, the kernel increments a number of ticks by one. Theinterval length between timer interrupts is called a ji�y. Since the kernelchecks for expired timers only when a timer interrupt occurs, the smallestmeaningful sleep request time is one ji�y. In fact, the POSIX standardfor select system call states that the process must sleep at least the timerequested. To guarantee this, a kernel adds one ji�y to the requestedsleep time in ji�es. That means the smallest sleep time in practice is twoji�es3.Fortunately in the modern Linux kernel gettimeofday provides nearlymicrosecond accuracy employing a time-stamp register (TSR) available onPentium processors that is incremented on each clock cycle. Earlier kernelversions returned the time-of-day value updated only at a timer interrupt.3.4 Possible solutionsMethods of solving the problem of accurate sleeps can be divided intothree groups:1. Using some mechanism to get �ner clock resolution.2. Compensating the di�erence in the next sleep request.3. Busy waiting.In the �rst group, the frequency of timer interrupts is increased ei-ther permanently or temporarily, and interrupts are handled either bythe kernel or by the user process. In the second group, the requestedsleep time is changed to re
ect the error made in previous sleeps or tomatch the expected actual sleep time. In the third group, the accurategettimeofday() call is used to actively wait until the requested time haselapsed.Methods are then compared using the following evaluation criteria:� high accuracy (small absolute and relative error),� transparency for applications,� load on the CPU,� amount of modi�cations needed to the kernel,3In kernel versions 2.2 and later the smallest sleep time is reduced to one ji�y.



154 Andrei V. Gurtov3.5 Measurement speci�cations3.5.1 Measurement modelInitially the following parameters were identi�ed as possibly a�ecting theresults:� the pattern of sleep requests by the application,� the overall system load,� the amount of computation in the application,� the length of the sleep series.After consideration, a decision was made to use a long series of uni-formly distributed in 0 ms to 100 ms requests on unloaded system. Thepattern of requests is di�erent for each application and thus di�cult togeneralize. The overall system load may have di�erent e�ect dependingon the priority of the real-time application. Computation time betweensleep requests can be withdrawn from the sleep time requested and thusshould not a�ect the results. The length of the sleep series was chosenof 1000 requests. This is longer than most sleep series in practice, butallows for better statistics.The sleep request series was generated by a C-program using standardLinux random() call. The series was the same for all tested methods. Anumber of shell scripts and short programs in C-language were writtento compute the relative and absolute error, sample mean and varianceand to plot �gures. All 1000 samples were used for statistics, but onlythe 100 �rst samples are shown in �gures to keep the size of graphics �lesmanageable.3.5.2 Test environmentPerforming tests required three di�erent Linux kernels to be installed on asingle machine. In Linux it is possible to keep multiple kernel boot image�les and switch between then on a system boot. A convenient interface isachieved using (Linux Loader) LILO tools.Software. Linux kernel 2.0.36, Computer Science Linux distribution(modi�ed Slackware), gcc 2.7.2.3, libc5 library, ELF executables.Hardware. Pentium II 450 MHz CPU, 128 MB RAM, 2 FUJITSU4325 MB HDDs.



Real-Time Network Simulation in Linux 1553.6 Methods of accurate sleep with kernel support3.6.1 Counting RTC interruptsLinux provides a driver to control the RTC chip, so the interrupt rate ofthe RTC can be set with a ioctl() calls and the process is informed ofthe interrupt occurrence using read() or select() system calls on the/dev/rtc device.The support for RTC in the kernel is optional and can be activatedwhen the kernel is compiled. At our department installation this optionis disabled, and a sample kernel had to be compiled with RTC supportenabled to perform tests.Figure 3(b) shows that this method produces fairly accurate results. Infact, as can be seen from Table 1, all actual sleeps are exactly as requestedwhen rounded to milliseconds. System tools indicated 0% CPU utilizationwhen running the test process.A negative side of this method is that it requires a replacement of thesleep routine in the applications. The Mowser library would need a majorchange to be able to use the RTC interface.3.6.2 Increasing the interrupt frequency of the kernelThe frequency of timer interrupts, and thus accuracy of select call is af-fected by the value of the HZ constant in kernel sources. It is de�ned inthe include/asm-i386/param.h �le. The default value is 100, but it ispossible to change within the range of the clock chip capabilities. Increas-ing the frequency of clock ticks has a negative impact in CPU overhead.As the Seawind system aims at approximately 1 ms resolution, the valueof HZ of 1024 can be considered appropriate.A sample kernel was compiled with this feature and measurementswere run. Figure 3(c) and Table 1 show the results. The main advantageof this method is the complete transparency for applications.3.6.3 UTIME patchUTIME is an extensive modi�cation of the kernel that aims at providingaccurate timing without putting an excess load on the system. It is doneby increasing the frequency of the timer only temporarily, only when thisis actually needed, because even if events are scheduled with microsecond



156
AndreiV.Gurtov

0 20 40 60 80 100
0

20

40

60

80

100

120

Requested sleep time (ms)

A
ct

ua
l s

le
ep

 ti
m

e(
m

s)

(a) Basic case 0 20 40 60 80 100
0

20

40

60

80

100

Requested sleep time (ms)

A
ct

ua
l s

le
ep

 ti
m

e(
m

s)

(b) Counting RTC interrupts 0 20 40 60 80 100
0

20

40

60

80

100

Requested sleep time (ms)

A
ct

ua
l s

le
ep

 ti
m

e(
m

s)

(c) Frequent kernel interruptsFigure 3. Performance of di�erent sleep techniques. A dashed line shows the optimal behavior. Graphscontain desired vs. requested sleep time for the �rst 100 requests



Real-TimeNetworkSimulationinLinux
157

0 20 40 60 80 100
0

20

40

60

80

100

Requested sleep time (ms)

A
ct

ua
l s

le
ep

 ti
m

e(
m

s)

(d) Sleep with slack 0 20 40 60 80 100
0

20

40

60

80

100

Requested sleep time (ms)

A
ct

ua
l s

le
ep

 ti
m

e(
m

s)

(e) Busy waitingFigure 3. (Continue) Performance of di�erent sleep techniques. A dashed line shows the optimalbehavior. Graphs contain desired vs. requested sleep time for the �rst 100 requests



158 Andrei V. Gurtovresolution they are rarely scheduled every microsecond. Rather than in-terrupt CPU at the �xed rate, the timer chip is programmed to interruptCPU at the time of the earliest scheduled event. This approach yieldsgood results, and the achieved accuracy is up to 50 �s [3].However, UTIME does a large modi�cation of the kernel, and it canpossibly have some negative side e�ects. It is not a part of the o�cial ker-nel that was veri�ed by hundreds of independent people. Another problemis practical usability: the required patch only installs on the certain ker-nel version (2.0.34) and is aimed at RedHat distribution. It might also beconsidered somewhat an overshot, because currently Seawind needs only1 ms resolution. For these reasons UTIME was not tested, but perhaps itwill be checked more closely in future.3.7 Methods of accurate sleep without kernel support3.7.1 Sleep with slackThe average accuracy of a sleep thread can be improved by measuring theactual sleep time of the current request and compensating the di�erencelater with the next sleep request. The interface to the sleep routine ismodi�ed to pass two parameters to the function: the time requested fora sleep and a pointer to a variable containing slack from the previoussleep request. The programmer is responsible for separating sleep threadsin the application, and assigning the slack variables to them. The sleeproutine in C-code is given below. The slack variable can contain thepositive or negative value, depending on whether the previous sleeps wereshorter or longer than requested. The slack variable is updated to thevalue compensated in the sleep.int sleep_with_slack(int sleep_ms, int *slack) {int slept;if (sleep_ms-*slack<=0) {*slack-=sleep_ms;return 0;}slept=ms_sleep(sleep_ms-*slack);*slack-=(sleep_ms-slept);return slept;}



Real-Time Network Simulation in Linux 159This method does not increase the accuracy of a single sleep call, ofcourse. However, as can be seen from Figure 3(d), actual sleep times areevenly distributed around the requested time. Table 1 shows that theabsolute error is very low, thus on average the actual sleeps are same asrequested.The best side of this method is that it can be used on unmodi�edkernels. It can be successfully combined with other methods that requirekernel support to further increase the accuracy accounting for deviationsin individual sleep requests.3.7.2 Sleep with pre-compensationIt is easy to note that the sleep time provided by the unmodi�ed select()tends to be larger than requested approximately by the constant compo-nent of 10 ms plus a variable part that varies from 0 to 9 ms dependingon the least important digit.In the method we call sleep with pre-compensation a requested sleeptime is decreased by the value of the expected oversleep. This can be doneinside the application or by modifying the sleep routine. For standardsleep with select() it decreased the errors, but not enough to make thismethod useful by itself.It was interesting to check if pre-compensation would improve theperformance of sleep with slack. In fact, the experiment has shown thatthere is no signi�cant di�erence when pre-compensation is used. At �rstit was surprising, but later it was observed that the slack variable tendsto stabilize at the value typically requested by pre-compensation.3.7.3 Busy waitingWe mentioned in Section 3.3 that the gettimeofday() call provides nearlymicrosecond resolution in time. It is possible to wait for an exact timeperiod by repeatedly calling gettimeofday until the requested time haselapsed.However, this approach would not work for an event-driven applica-tion, as Seawind is. All event handlers must be kept short not to blockthe processing of other pending events, and busy waiting inside a handleris certainly unacceptable. A better solution is busy waiting through theMowser dispatcher itself. This is possible because Mowser supports event



160 Andrei V. Gurtovhandlers of di�erent priorities. In this way a handler mev later is regis-tered with a zero timeout and minimal priority. If there are any pendingevents, they will be processed �rst, and then a function for timer eventis called. This function checks if the time of request has already elapsed,and if not, re-register the handler in the same way.This method can be used when there is a single process per CPU.For a multi-process system only very short sleeps can be done in such away, otherwise the sleeping process will use up all its CPU quota only forbusy waiting and will be preempted. An advantage of the method is highaccuracy.Figure 3(e) and Table 1 show the results. For all but one request theerror is zero. This single request well illustrates the shortcoming of thismethod, as the probable reason for it is a preemption of the process thathas used up its CPU quota.4 Other problemsIn this section we outline miscellaneous issues that a�ect the accuracy ofsimulation results. All of them need closer consideration, which in turnrequires benchmarking. Some of the problems were already experimentedwith, so possible solutions are also given.4.1 Disk I/OSeawind processes access the disk for reading con�guration and writinglog. All con�guration related information is read before starting the ex-periment and thus should not be a problem.In Seawind, an experiment consists of repetitions of basic tests (forexample one TCP connection), so the log writing should not cause addi-tional problems for short basic tests, because the log can be stored entirelyin the main memory during each basic test and written to disk betweenbasic tests.For more intensive logging (when, for example, whole packets arelogged) and longer tests the problem remains. A good method of real-time logging is to keep a number of bu�ers each of the size of a disk sectorin the main memory, and asynchronously write a full bu�er to disk while�lling the other bu�ers [6]. The appropriate number of bu�ers should



Real-Time Network Simulation in Linux 161be determined experimentally. Performance of asynchronous I/O underLinux needs closer consideration, because it is currently done withoutkernel support, but with a separate user thread per each request.In general, providing a lightweight and predictable I/O is a fairly dif-�cult task that requires close consideration and possibly replacement ofsome Linux kernel components [4].4.2 CPU and memory performanceEven if on average occurring events require a small amount of time toprocess, situations are possible when several events are scheduled close toeach other. For example, a bunch of background load users have arrivedand need to be processed almost instantly. Some delay in dispatchingevents is inevitable in this case, but it is important to �nd out how largeit is and how it can be accounted for.The overall system performance can be of concern when the simulationmodel involves much computing. The Seawind code would need to bepro�led and analyzed to remove the bottlenecks. In particular, data insidethe simulation process often need to be copied without actually modifyingthem. In some cases this can be avoided by more careful programming.4.3 Clock synchronizationThe PC clock chip is accurate to 13 min per year at normal temperatureand a fresh battery [7]. In smaller units, it is approximately 90 ms perhour. This is large enough to impose problems with the analysis of loggingdata, as logging is distributed. Some mechanism should be used to either�nd out the o�set of each computer's clock or to synchronize them. Atimesync script is available on all CS department Linux machines. It usesNetwork Time Protocol (NTP) to synchronize the clock on a computerwith the clock of the time server.4.4 Process schedulingStandard Linux processes use SCHED OTHER default universal schedul-ing policy, which aims at optimizing throughput rather than ful�llingrequirements of real-time processes. If besides a simulation process, otheractive processes are present on the same computer, it is important that the



162 Andrei V. Gurtovsimulation process is given highest priority so that it cannot be preemptedby other processes. Fortunately, Linux ful�lls the POSIX requirements forsoft-real time systems and provides two other scheduling policies for spe-cial time-critical applications that need precise control over the way inwhich runnable processes are selected for execution [6]. In order to deter-mine the process that runs next, the Linux scheduler looks for the non-empty list with the highest static priority and takes the process at thehead of this list. All non-real time processes run under the static priorityof 0. In opposite, a real-time process can assign itself a static priority inthe range 0 to 99. All scheduling is preemptive, if a process with a higherstatic priority gets ready to run, the current process will be preemptedand returned into its wait list.For real-time processes two scheduling policies are available, First InFirst Out (SCHED FIFO) and Round Robin (SCHED RR). SCHED RRis a simple enhancement of SCHED FIFO, the only di�erence is that inSCHED RR each process is only allowed to run for a maximum timequantum. If a SCHED RR process has been running for a time periodequal to or longer than the time quantum, it will be put at the endof the list for its priority. Assigning scheduling policies and prioritiesfor processes of a given system can be done only based on the exactfunctionality of each process.A computer system used as a platform for running experiments shouldbe as bare-boned, as possible. In particular, the X server should not beused, but rather a single textual shell. Care should be taken to removemiscellaneous system processes and daemons that are not needed for thereal-time processes, but are present on the normal Linux system, becauseany such process is a potential source for scheduling distortions for a real-time application.4.5 Virtual memory pagingVirtual memory paging can cause unexpected delays in the execution ofreal-time processes. In the �rst place, paging should not happen at allduring the run of an experiment, but in some cases (for example whenlog �le is kept in the main memory) is possible. To prevent this problemfrom occurring, a mlockall system call should be used. It disables pagingfor all pages mapped into the address space of the calling process. This



Real-Time Network Simulation in Linux 163includes the pages of the code, data and stack segment, as well as sharedlibraries, user space kernel data, shared memory and memory mapped�les. All mapped pages are guaranteed to be resident in RAM when themlockall system call returns successfully and they are guaranteed to stayin RAM until the pages are unlocked again by munlockall or until theprocess terminates.5 ConclusionMiscellaneous technical issues are shown to be crucial for a sound imple-mentation of a real-time network simulator. The most important problemis to provide a simulation process with an accurate delay mechanism thatdoes not interfere with other processes. Several methods were evaluatedand their usability was discussed.The excellent accuracy in sleeps can be achieved by counting RTCinterrupts at the expense of modi�cations to applications and possiblyto the kernel. Busy waiting provides the high accuracy as well, however,periodic distortions are possible due to intensive CPU utilization. Thismethod requires a modi�cation to applications, but not to the kernel.Increasing frequency of kernel interrupts (HZ) gives high accuracy withcomplete transparency for applications, but does require a modi�ed kernel.Finally, sleep with slack allows for good accuracy on average for longersequences of sleep requests on standard kernel with no overhead. Howeverthe programmer has to identify sleep threads in the application.While no method was found to satisfy all the criteria, strong and weaksides of each method were identi�ed to make an appropriate choice forparticular purpose of a simulation study. The other important problemswere brie
y discussed, but more elaborate research is a subject to furtherwork.AcknowledgmentsI express my deep gratitude to prof. Timo Alanko for reviewing the paper,for invaluable help and support, and to Dr. Iouri A. Bogoiavlenski foradvice and encouragement. I thank Aki Laukkanen for useful commentson the paper.



164 Andrei V. GurtovReferences[1] H. Helin, A. Gurtov, Mowgli Communication Services: Mowser li-brary. Technical report, University of Helsinki, December 1999.[2] A. Law, D. Kelton, Simulation modeling & analysis. McGraw-Hillseries in industrial engineering and management science, second edi-tion, 1991.[3] B. Srinivasan, A Firm Real-Time System Implementation UsingCommercial O�-The-Shelf Hardware and Free Software. Master ofScience thesis, University of Kansas, 1998.[4] R. Hill, Improving Linux Real-Time Support: Scheduling, I/O Sub-system, and Network Quality of Service Integration. Master of Sciencethesis, University of Kansas, 1998.[5] K. Atkinson, An Introduction to Numerical Analysis. John Wiley &Sons, 1978.[6] B. Gallmeister, POSIX.4: Programming for the real world. O'Reilly& Associates, 1995.[7] H. Messmer, The Indispensable PC Hardware Book. Addison-Wesley,third edition, 1997.[8] A. Gurtov, Technical Issues of Real-Time Simulation in Linux. Bach-elor Thesis, University of Petrozavodsk, 1999.[9] M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinen, and T. Alanko,An E�cient Transport Service for Slow Wireless Telephone Links.IEEE Journal on Selected Areas in Communications, vol. 7, no 15,pp. 1337{1347, 1997.


