FDPW’99 Volume 2, 1999

On the problem of optimal stack
control

Dr. Andrew V. Sokolov

Department of Computer Science, University of Petrozavodsk
Lenin St., 33, Petrozavodsk, Republic of Karelia, 185640, Russia

E-mail: asokolov@mainpgu.karelia.ru

Abstract

This paper concerns issues related to building mathematical
models and optimal algorithms of stack control in single- and
two-level memory. These models were constructed as 1, 2 and
3-dimensional random walks. For solving this problem the Markov
chain theory was applied. This research work was supported by the
Russian Foundation for Fundamental Research, grant 95-01-00800.

1 Introduction

The stack concept [1] is used in the development of software and hardware
for a wide range of problems. In the case of single-level memory, several
methods of stack presentation in memory may be used for stack control.
The connected presentation is the first method. In this case any number
of stacks can coexist inside a shared memory area until the free memory
list is exhausted. But on the other hand, this approach requires an ad-
ditional link field for each stack element. The second method (Garvic’s
algorithm) uses the consecutive allocation of one stack after another. It is
also possible to allocate stacks consequently and divide them into pairs of
stacks growing towards each other [2]. This is the case we analyze here,
as in [3], it has been shown that this method of controls is optimal.

© Andrew V. Sokolov, 1999

96 Andrew V. Sokolov

2 Optimal control in single-level memory

In this paper it is assumed, that there are n stacks divided into pairs
of stacks growing towards each other (the odd stack, if there is any, is
assumed to grow towards the empty stack). Let ¢;, p; denote the proba-
bilities of deletion and insertion information into the i-th stack (a process
transfers from the state 0 into 0 with the probability ¢;). Our task is to
determine the optimal initial memory distribution and optimal memory
redistribution in case one of the stacks overflows, where optimality is un-
derstood in the sense of maximizing the average functioning time until
stack overflow. More exactly the problem will be stated for n = 3.

Suppose there are three stacks located in a memory area of volume m
units. The pair of stacks growing towards each other occupies s memory
units and m — s memory units are left for the third stack. Let zq, x>
and x3 denote the current stack heights. In this case the mathematical
model is the three-dimensional random walk inside a prism with three
reflecting barriers x1 = —1, o = —1, x3 = —1 and two absorbing barriers
r1+zy=s+1,x3=m—s+ 1.

The problem of finding optimal initial memory distribution consists in
determining the value of s and numbering of the stacks (i.e. determining
the number of the stack to be placed separately from the others), to
maximize the average time of walk inside the prism until the absorption
in its border, provided the process begins from the origin. In other words
this task is reduced to choosing an optimal prism. These problems were
solved using the Markov absorbing chain theory results.

The algorithms as well as the computational programs in C++ pro-
gramming language for the case n = 3 and n = 4 were developed.

2.1 The case of three stacks, when only insertions are
assumed (¢; = 0)

Here we’ll consider the case of three stacks, when only insertions are
allowed (¢; = 0). In this case we have the probability of moving out
of the position (z1,z2,z3) to the position (z; + 1,22,23) — p1, to the
position (z1,x2 + 1,23) — po, and to the position (x1,x2,23 + 1) — ps3
where p; + p2 + p3 = 1.

Let £ = 1 + 22, y = x3, p = p1 + p2 and ¢ = p3. Then the

On the problem of optimal stack control 97

2-dimensional random walk in the integer lattice space, where 0 < z < s,
0 <y <m — s is used as a mathematical model. The probability of mov-
ing out of the position (z,y) to the position (z +1,y) is p, to the position
(z,y+1)isqg=1—p.

The process starts from the state (0,0) and is absorbed at the lines
r=s+landy=m—s+1.

The objective of our study is to find the value s, where the mean time
of walk to the absorption would be maximal,

We have some methods for solution this problem.

1. One can apply the Markov chain theory.
2. One can solve the respective difference equation.

3. The combinatorial solution, when we calculate the number of paths
from the point (0,0) to respective points.

The algorithms as well as the computational programs in C++ pro-
gramming language for the all methods were developed. In Table 1 cal-
culated probabilities of insertion into stack, which should be located sep-
arately ¢, optimal values of parameter s, and mean time until overflow
with optimal values of parameters T" with m = 10 are listed.

It is seen that if one probability of insertion into stack is very small
comparing with some other one, then

s~p*xm, or s~ (pxm)—1,

where ¢ = min(pi,pa,p3), p=1-q.
If the probabilities are approximately equal, then

s~p*xm, or s~ (pxm)—1,

where ¢ = max(pi,p2,p3), p = 1 —¢. In this case, as it was shown by
calculations some variants are possible, ¢ is equal to the mean value of
probability. For example, if m = 30, p; = 0.33, po = 0.35, p3 = 0.32 then

if ¢ = 0.32 then s =20, T' = 27.60467,
if ¢ = 0.35 then s = 19, T' = 27.60499,

if ¢ = 0.33 we have optimal variant s = 19, T' = 27.61359.

98 Andrew V. Sokolov

Table 1. Results of computations

Lo | p [ps | ¢ [s] T |
0.8 0.2 0.0 0.0 10 | 11.0

0.8 0.19 0.01 0.01 10 | 10.466
0.8 0.18 0.02 0.02 91 10.12

0.6 0.3 0.1 0.1 8 9.66

0.5 0.3 0.2 0.2 7 9.397
0.5 0.24 0.26 0.24 7 9.448
0.5 0.25 0.25 0.25 7 9.442
0.4 0.3 0.3 0.3 7 9.313
0.333 | 0.333 | 0.333 | 0.333 6 9.297
0.35 0.35 0.3 0.35 6 9.321
0.35 0.33 0.32 0.35 6 9.321
0.36 0.32 0.32 0.36 6 9.328
0.38 0.31 0.31 0.38 6 9.329

If pp = p» = ps = 1/3, then s is not equal to m % 2/3, as it seems
intuitively. For example, if m = 1000, optimal variant s = 661, but not
at all s = 667.

These methods we can apply for four stacks.

3 Two-level memory

Now that we have examined how stack overflows and underflows occur in
program execution, how should they be handled? Four possible ways of
handling spills are [4]:

1. A very large stack memory. The simplest way to solve the stack
problem is simply to assume that stack overflows will never happen.
WISC CPU/16 uses this method with a stack size of 256 elements.

2. Demand fed single-element stack manager. To implement this strat-
egy, the stack buffer is set up as a circular buffer with a head and
tail pointer. A pointer to memory is also needed to keep track of the

On the problem of optimal stack control 99

top element of the memory-resident portion of the stack. Whenever
a stack overflow is encountered, the bottom-most buffer-resident el-
ement is copied to memory, freeing a buffer location. Whenever an
underflow is encountered, one element from memory is copied into
the buffer. This technique has the appeal that the processor never
moves a stack element to or from memory unless absolutely nec-
essary, guaranteeing the minimum amount of stack traffic. RISC
processors use this method for local scalars and procedures argu-
ments management [5, 6, 7].

3. Paging stack manager. An alternative to the demand-fed strategy is
to generate an interrupt on stack overflow and underflow, then use
software to manage the stack spill. This approach uses less control
hardware than the demand-fed method, but requires a stack buffer
that is somewhat bigger to reduce the frequency of the interrupts.
The general strategy used in this scheme is to have limit registers
pointing to locations near the top and bottom of the stack buffer
space. When an instruction causes the stack pointer to be less than
underflow pointer, a half-buffer full of elements is copied from pro-
gram memory. When an instruction exceeds the overflow pointer, a
half-buffer full of elements is copied into program memory. The pag-
ing scheme allows arbitrarily sized sections of a large stack memory
to be used by different procedures on a time-sliced basis. Because of
this, the stack buffer appears as a section of special memory, not as
a circular buffer. Therefore, in practice, a stack overflow actually in-
volves copying a half-buffer of elements to memory, then relocating
the other half-buffer to place it at the start of the stack buffer area.
RTX2000 and RTX32P both use this method for stack management.

4. An associative cache. This method involves significant hardware
complexity but does not provide any advantage over the previously
mentioned methods for stack machines, since stack machines do not
skip about much in accessing their stack elements.

The “demand” method always swaps one element and the “paging”
method swaps half of the fast memory. We want to determine the optimal
number xy of stack elements in the fast memory, if some probabilistic
characteristics of stacks and time characteristics of memory are known.

100 Andrew V. Sokolov

3.1 Single stack in two-level memory
3.1.1 Case 1. Without taking into account the cost of swapping

We now consider the case of a single stack.

Without taking into account the cost of swapping, the problem reduces
to the search of the initial state g of the 1-dimensional random walk, that
maximizes the expected walk time until absorption in the states —1 and
m + 1. The model reduces to the problem of gambler ruin, when the
common capital of gamblers equals m + 2 and the first gambler’s capital
equals zg + 1.

In the case of fixed information deletion probabilities (¢) and insertion
probabilities(p) there is an analytical solution of the respective difference
equation for the game time [8] and the optimal value 2o may be derived
analytically and looks as follows:

((a/p)™ T2 =1)p
(m +2)qIn(q/p)

loga

] , ifp#q.
o =

m
— f el =1
9 , 1I'p q /2:

3.1.2 Case 2. Swapping costs are taken into account

If swapping costs are taken into account, then as an optimization criterion
we can choose the average time of access to the top of stack. In the present
paper we consider a generalization of the problem stated in [9] and present
an optimization criterion in terms of cache memory theory [10].

Similar formulation of the problem was discussed in [11] as well. In
this paper it has been proposed in overflowing to relocate k elements of
fast top of stack into the secondary memory and to relocate the rest upper
elements to the start of fast memory, but in emptying of top stack it has
been suggested to relocate k elements from the secondary memory into
the fast one.

Unfortunately, in modeling and in algorithm analyzing an inaccuracy
was committed. The value Dy, is the mean time until memory overflow or
underflow is involved in the optimization criterion, if the process begins
from the state k (the number of stack elements in fast top). But we fall
into this state only after underflow, while after overflow we pass into the

On the problem of optimal stack control 101

state m — k + 1 and, consequently, in the optimization criterion D, 11
must be used but not Dg. In our model the number of elements in fast
memory, but not the number of relocated elements is used as a parameter,
and the probability of overflow as well as of underflow are taken into
consideration.

Let to denote the access time to the top of the stack in fast mem-
ory, t;—the transfer time of one element in fast memory, to—the access
time to second-level memory, t3—the time of swapping one element be-
tween different memory levels.

According to the architectural solutions of loss function in states [7],
relocations can have different forms and, therefore, we’ll consider some
possible variants of stack top implementation.

1. For example, for “paging” method loss function, specified in states,
takes the form

fl@)=to, f(-1)=ta+tz*m,
f(m+1)=t2+t3*(m—|—1—$0)+t1*(:L'()—l).

In this case we suppose that in underflowing of the top of stack z
elements are relocated from the secondary memory into the buffer,
while in overflowing m + 1 — xg elements are kept in the secondary
memory and xo—1 elements are relocated into the start of the buffer.
Then, after the insertion of a new element we have zy elements in the
buffer, and the new phase begins and continues until the next over-
flow or underflow. We assume that, when elements are relocated,
the loss is proportional to the number of relocated elements.

2. In overflowing, it may be considered that the relocation of elements
in the buffer does not depend on the number of elements and takes
a fixed time t. Then f(m +1) =ts +t3x (m+ 1 — o) + 1.

3. For the circular stack buffer f(m + 1) = to 4+ (m + 1 — zg) x ¢3, since
in contrast to the previous case, at stack overflow upper elements of
stack are not relocated into the start of the buffer.

Depending on the apparatus solutions, loss functions can have an-
other form.

102 Andrew V. Sokolov

4. Tt can be assumed that the swapping between memory levels is im-
plemented so that the time of relocation does not depend on the
number of relocated elements. Then f(—1) = f(m + 1) = t».

5. The implementation with copying is possible in background mode,
and then f(—1) = ta + t3 *x 29, f(m + 1) = 0. In this case stack
elements storage in memory is not required at overflow, but more
complex equipment is necessary, and the access time to the top of
stack increases significantly in fast memory.

There are some other possible variants of architectural solutions. For
example, in [7] it was proposed for RISC processors to set up windows of
variable size, which is determined during the run of procedure. The math-
ematical model can be described approximately as a random walk, since
in this case the probability of relocation from the state x to x — I (return
from the procedure of length 1) depends on the length of procedures in
stacks, that is a non-Markov process takes place.

Now we consider the average coefficient of losses, which equals the ratio
number of addresses to memory, called swapping, to a general number of
addresses. For the stack memory this coefficient equals 1/T'(x), where
T(xo) is the expected walk time until absorption. The average time of
access equals

1 T(l‘o) -1 _ C(fo) - to
T(eo)) gy 0T Ty

where C(z0) is average losses for swapping in states —1 and m + 1.

F(xo) =

C(20) = Pao,—1 f(=1) + Pagmr1 f(m + 1),

where p,,,—1 is the probability that starting at o we are absorbed in —1,
Dao,m+1 18 the probability that starting at zo we are absorbed in m + 1.

The objective of our study is to find the value xg, where the average
time of access to the top of the stack F(z() would be minimal.

1. Let p=¢q = 1/. Then

1_:[704—1 _CU()-FI
m+27 pmo,m+1—m+27

T(zo) = (zo+ 1)(m+1—1x0), see][8].

pza,fl =

On the problem of optimal stack control 103

While calculating the derivative of the function F'(xg) on zo, it can
be shown, that the optimal value z¢ can be expressed using the following
formulas for the parameters, which are of interest in practice. Since only
integral numbers are physically meaningful, we have to choose the best
value out of floor(zg) and ceil(zy) as an integral optimal value.

Variant 1.
_ —b+ Vb —4dac

Zo
2a

where a = t;m + t3,
b= —2t0m + 2t1m + 2t2m — 2t3m — 4t0 + 4t2 — 2t3 y
c= t0m2 — t2m2 + t3m2 + 2tom + tym — 2tom + 2t3m + t3 .

Variant 2.
_ —=b+b? —4dac

To
2a

where a = t3 + t,
b = —2togm + 2tom — 2tsm — 4tg + 4ty — 2t3 + 2t ,
¢ = tom? — tam? + tsm? + 2tgm — 2tom + 2tsm + t3 + t.

Variant 3.
_ —b+ Vb —4dac

Zo
2a

where a = t3,
b= —2t0m + 2t2m — 2t3m — 4t0 + 4t2 — 2t3 s
Cc = t0m2 — t2m2 + t3m2 + 2t0m — 2t2m + 2t3m + t3 .

Variant 4.
m
To = 3
Variant 5.
o =m .

These are some results of calculation using given formulas, as an ex-
ample. Let us take some constants from [5] and [11]. Let to =1, t» = 30,
t3 = 16, t; = 1, t = 8. Optimal values zy and corresponding values of
mean access time F'(xg) for the first three variants of top stack organiza-
tion and several values m are presented in Tables 2—4.

104 Andrew V. Sokolov

Table 2. Variant 1 of top stack organization

m 8 16 32 64

T 3) 10 16
F(z) 5.042 | 3.051 | 2.025 | 1.51
F(m/2) || 5.12 | 3.08 | 2.04 | 1.518

Table 3. Variant 2 of top stack organization

m 8 16 | 32 | 64
0 3 6 12 | 23

F(zo) || 5.142 | 3.068 | 2.022 | 1.506

F(m/2) |[52 | 3.086 | 2.028 | 1.508

Table 4. Variant 3 of top stack organization

m 8 16 | 32 | 64
0 3 6 13 | 25
F(zo) | 5.008 | 3.027 | 2.011 | 1.503
F(m/2) | 5.040 | 3.037 | 2.014 | 1.504

It is seen from the tables that the mean access time to the top of stack
tends to tg = 1, while the fast memory size increases. Notice that in all
variants of architecture zo # m/2, although in practice, for example, in
the “paging” method z¢ = m/2 is used.

2. If p # ¢ then a numerical solution of the problem is proposed.

In some applications, it is considered that a more adequate model of
stack behavior is that, in which alongside the possibility of increase or
decrease of the stack length, allowance is made for the stack length to be
unchanged. In this situation the model changes are apparent. A particle
transfers from the state z into x — 1 with the probability p;, into = + 1
with the probability ps, and into z with the probability ps. It can be
shown that the solutions of the discussed problems remain valid, and only
p and ¢ are replaced for ps and p;.

On the problem of optimal stack control 105

3.2 Two stacks in two-level memory

This problem was originally posed by Knuth and formulated as follows.
Let two stacks grow and collide inside a shared memory of volume m. In
this case the location of their collision may be considered as a random
variable. It is known that at each stage an element may be popped from
the stack with the probability 1 — p and some information may be pushed
into one of the stacks with the probability p. Let M(m,p) denote the
expectation of the random variable max(k;, k2), where k; and ko are the
heights of the stacks collided.

D. Knuth [1] posed the problem to construct the mathematical model
of this process and to find the form of the function M (m,p).

In [12, 13] the mathematical model of the process has been constructed
as the two-dimensional random walk in a triangle with two reflecting
boundaries and one absorbing boundary. The algorithm of computing
M (m, p) was proposed for the fixed parameter m. In order to solve the
problem, the Markov chain theory was used.

In [14-18] the asymptotic behavior of stack sizes at the instant of the
overflow, as well as the time till the memory overflow were investigated.

In the present paper we consider a generalization of Knuth’s problem.
We suppose, that in the case of memory overflow the process does not
terminate. Instead, swapping with the second level memory occurs, and
tops of stacks in fast memory transfer into some state, which becomes the
starting position of subsequent computing. Our task is to find this state.
The tendency is to have as few swappings as possible, but the swapping
does occur when the memory is overflowed and the tops of the stacks are
emptied. Hence, we have to search for the state, where the mean time till
swapping would be maximum, provided the process starts from this state.

Let z;, and x, denote the current stacks’ heights. Then the 2-
dimensional random walk in the integer lattice space, where z; > 0,
o > 0, 1 + z2 < m, is used as a mathematical model. The probability
of moving out of the position (z1,z2) to the left is ¢1, to the right—is py,
downward—is ¢o, upward—is po, and p1 + ps + q1 + ¢q2 = 1.

The objective of our study is to find the state so = (xgo),xgo)), where
the mean time of walk to the absorption at the lines zy + 2o = m + 1,
1 = —1, x5 = —1 would be maximal, provided the process starts from
the state sg.

106 Andrew V. Sokolov

This problem has been solved using the Markov absorbing chain theory
results [19]. An algorithm of numbering the states was proposed, which
made it possible to estimate the transition matrix corresponding to the
Markov chain.

0O Qnm O -+ 0 0 0
P, O Qm-1 -+ O 0O O
O Ppoa O -+ O O O
O O O - 0 @2 0O
O O O e B O @
O O O -+ 0O P~ 0O

where O is a zero matrix, (0, is a matrix of size k + 1 on k, P, is a matrix
of size k on k + 1.

@ 0 0 --- 0
@ ¢ 0 - 0
0 ¢ 0 0
Qr =
0 0 0 @
0 0 0 @
pP1 P2 0 0 0 0
0 ¢ p 0 0 0
P, =
0 0 0 0 -+ p1 p2

The algorithm as well as computational programs were developed for
solving this problem. Since the program requires finding the inverse of
the matrix of dimension m?, special methods of storing sparse matrixes
were involved. Some results of numerical experiments were obtained. In
a symmetrical case for fixed probabilities py = po = @1 = ¢ = 0.25,

it was found that xgo) ~ xgo) ~ %

4 Conclusion

In practice, the probability characteristics of stacks depend on numerous
factors. In the majority of applications, at the beginning of work the in-
sertion into a stack is more probable, in the middle of work the insertion

On the problem of optimal stack control 107

and the deletion are equally probable, and at the end deletion is more
probable, as the work starts and finishes with an empty stack. For the
implementation of optimal algorithms of stack control, the investigation
of stack behavior is required with different input data. Such investigation
has been carried out in creating RISC processors. Six specific programs
(fractal generator, Fort compiler, Hanoi towers, N-queens problem) were
analyzed for “demand” method [4]. In these programs maximal stack size
was equal to 52 elements for Hanoi towers. In [20] stack behavior for an
implementation of procedures was investigated in the interests of the pro-
ceject Bell Labs C Machine. In their experiments the stack depth reached
1106 words using compiler PDP-11. Certainly, it would be interesting to
carry on the experiment and to compare practical and theoretical optimal
methods of stack swap implementation using concrete programs.

Although it is difficult to say, what nearest prospects computers with
stack architecture possess, their evident profits in the range of real time
embedded control applications such as small size, high processing speed
and excellent support of interrupt handling allow to hope that the concept
of stack architecture in its spiral development would be embodied in new
processors. In this connection, it should be noted that the virtual Java-
machine, for example, is a stack machine [21]. In any case, stacks due to
the fundamentality of recursion principle in informatics, will always be of
importance for the implementation of the software and hardware support
of computers.

Acknowledgments
The author would like to thank S. S. Lavrov, E. A. Zhogolev, P. J. Koop-

man and V. V. Antonov for stimulating discussions.
References

[1] D. E. Knuth, The art of computer programming. Vol. 1. Addison-
Wesley, Reading, MA, 1976.

[2] S. Avierri, Paired sequential lists in a memory interval. Inform. Pro-
cess Lett, No 8, 9, 10, 1979.

[3] A. Sokolov, Optimal Dynamic distribution of non-page virtual mem-
ory. PhD Thesis, LSU, 1981. (in Russian)

108 Andrew V. Sokolov

[4] P. J. Koopman, Stack Computers. Ellis Horwood, 1989.

http://www.cs.cmu.edu/ koopman/stack_computers/

[5] Y. Tamir, C. Sequin, Strategies of control register’s file. IEEE Trans.
Comput. c-32(11), 1983. p. 977.

[6] D. A. Patterson, C. H. Sequin, Reduced Instruction Set VLSI Com-
puter. Proceedings of the 8th Symposium on Computer Architecture.
No 6, pp. 72-86, 1980.

[7] M. G. H. Katevanis, C. H. Sequin, D. A. Patterson, and R. W. Sher-
burne, RISC:Effective Architectures for VLSI Computer. VLSI Elec-
tronics. Microstructure Science, vol. 14, (ed. N. G. Einspruch), 1986.

[8] W. Feller, An introduction to probability theory and its application.
Vol. 1, Wiley, New York, 1964.

[9] V. Mazalov, A. Sokolov, About optimal dynamic storage allocation.
Control in dynamic systems, Leningrad, 1979. (in Russian)

[10] T. Kohonen, Contents-Addressable Memories. Springer-Verlag, 1980.

[11] Hasegava M., Shigei Y., High-speed top-of-stack scheme for VLSI
processor: a management algorithm and its analysis. Proceedings of
the 12th Symposium on Computer Architecture, pp. 48-54, 1985.

[12] A. Sokolov, About storage allocation for implementing two stacks. Au-
tomation of experiment and data processing, Petrozavodsk, pp. 65—
71, 1980. (in Russian)

[13] A. Sokolov, On the problem of optimal stack control in two level mem-
ory. Probabilistic methods in discrete mathematics, Proceedings of
the Fourth International Petrozavodsk Conference VSP, Utrecht, The
Netherlands, pp. 349-351, 1997.

[14] A. C. Yao, An analysis of a memory allocation scheme for implemen-
tating stacks. STAM J. Computing. No 10, pp. 398-403, 1981.

[15] P. Flajolet, The evolution of two stacks in bounded space and random
walks in a triangle. Lec. Notes Computer Sci., vol. 223, pp. 325-340,
1986.

On the problem of optimal stack control 109

[16]

[17]

[18]

[19]

G. Louchard and R. Schott, Probabilistic analysis of some distributed
algorithms. Lect. Notes Computer Sci., vol. 431, pp. 239-253, 1990.

G. Louchard, R. Schott, M. Tolley, P. Zimmermann, Random walks,
heat equation and distributed algorithms. J. Comput. Appl. Math.,
vol. 53, pp- 243-274, 1994.

R. S. Maier, Colliding Stacks: A Large Deviations Analysis. Random
Structures and Algorithms, No 2, pp. 379-421, 1991.

Kemeny J. G., Snell J. L., Finite Markov Chains. Van Nostrand,
Princeton, New Jersey, 1960.

D. R. Ditzel., H. R. McLellan, Register Allocation for Free: The C
Machine Stack Cache. Proc. Symp. Archit. Support Progr. Lang.
Oper. Systems, ACM 0-89791-066-4 82/03/0057, pp. 4856, 1982.

A. Taivalsaari, Implementing a Java Virtual Machine in the Java

Programming Language. Sun microsystems, Technical Report Series,
March 1998.

