
FDPW'99 Volume 2, 1999On the problem of optimal stackcontrolDr. Andrew V. SokolovDepartment of Computer Science, University of PetrozavodskLenin St., 33, Petrozavodsk, Republic of Karelia, 185640, RussiaE-mail: asokolov@mainpgu.karelia.ruAbstractThis paper concerns issues related to building mathematicalmodels and optimal algorithms of stack control in single- andtwo-level memory. These models were constructed as 1, 2 and3-dimensional random walks. For solving this problem the Markovchain theory was applied. This research work was supported by theRussian Foundation for Fundamental Research, grant 95-01-00800.1 IntroductionThe stack concept [1] is used in the development of software and hardwarefor a wide range of problems. In the case of single-level memory, severalmethods of stack presentation in memory may be used for stack control.The connected presentation is the �rst method. In this case any numberof stacks can coexist inside a shared memory area until the free memorylist is exhausted. But on the other hand, this approach requires an ad-ditional link �eld for each stack element. The second method (Garvic'salgorithm) uses the consecutive allocation of one stack after another. It isalso possible to allocate stacks consequently and divide them into pairs ofstacks growing towards each other [2]. This is the case we analyze here,as in [3], it has been shown that this method of controls is optimal.c
 Andrew V. Sokolov, 1999

96 Andrew V. Sokolov2 Optimal control in single-level memoryIn this paper it is assumed, that there are n stacks divided into pairsof stacks growing towards each other (the odd stack, if there is any, isassumed to grow towards the empty stack). Let qi, pi denote the proba-bilities of deletion and insertion information into the i-th stack (a processtransfers from the state 0 into 0 with the probability qi). Our task is todetermine the optimal initial memory distribution and optimal memoryredistribution in case one of the stacks over
ows, where optimality is un-derstood in the sense of maximizing the average functioning time untilstack over
ow. More exactly the problem will be stated for n = 3.Suppose there are three stacks located in a memory area of volume munits. The pair of stacks growing towards each other occupies s memoryunits and m � s memory units are left for the third stack. Let x1, x2and x3 denote the current stack heights. In this case the mathematicalmodel is the three-dimensional random walk inside a prism with threere
ecting barriers x1 = �1, x2 = �1, x3 = �1 and two absorbing barriersx1 + x2 = s+ 1, x3 = m� s+ 1.The problem of �nding optimal initial memory distribution consists indetermining the value of s and numbering of the stacks (i.e. determiningthe number of the stack to be placed separately from the others), tomaximize the average time of walk inside the prism until the absorptionin its border, provided the process begins from the origin. In other wordsthis task is reduced to choosing an optimal prism. These problems weresolved using the Markov absorbing chain theory results.The algorithms as well as the computational programs in C++ pro-gramming language for the case n = 3 and n = 4 were developed.2.1 The case of three stacks, when only insertions areassumed (qi = 0)Here we'll consider the case of three stacks, when only insertions areallowed (qi = 0). In this case we have the probability of moving outof the position (x1; x2; x3) to the position (x1 + 1; x2; x3) | p1, to theposition (x1; x2 + 1; x3) | p2, and to the position (x1; x2; x3 + 1) | p3where p1 + p2 + p3 = 1.Let x = x1 + x2, y = x3, p = p1 + p2 and q = p3. Then the

On the problem of optimal stack control 972-dimensional random walk in the integer lattice space, where 0 � x � s,0 � y � m� s is used as a mathematical model. The probability of mov-ing out of the position (x; y) to the position (x+1; y) is p, to the position(x; y + 1) is q = 1� p:The process starts from the state (0; 0) and is absorbed at the linesx = s+ 1 and y = m� s+ 1.The objective of our study is to �nd the value s, where the mean timeof walk to the absorption would be maximal,We have some methods for solution this problem.1. One can apply the Markov chain theory.2. One can solve the respective di�erence equation.3. The combinatorial solution, when we calculate the number of pathsfrom the point (0; 0) to respective points.The algorithms as well as the computational programs in C++ pro-gramming language for the all methods were developed. In Table 1 cal-culated probabilities of insertion into stack, which should be located sep-arately q, optimal values of parameter s, and mean time until over
owwith optimal values of parameters T with m = 10 are listed.It is seen that if one probability of insertion into stack is very smallcomparing with some other one, thens � p �m ; or s � (p �m)� 1 ;where q = min(p1; p2; p3), p = 1� q.If the probabilities are approximately equal, thens � p �m ; or s � (p �m)� 1 ;where q = max(p1; p2; p3), p = 1 � q. In this case, as it was shown bycalculations some variants are possible, q is equal to the mean value ofprobability. For example, if m = 30, p1 = 0:33, p2 = 0:35, p3 = 0:32 thenif q = 0:32 then s = 20, T = 27:60467,if q = 0:35 then s = 19, T = 27:60499,if q = 0:33 we have optimal variant s = 19, T = 27:61359.

98 Andrew V. SokolovTable 1. Results of computationsp1 p2 p3 q s T0.8 0.2 0.0 0.0 10 11.00.8 0.19 0.01 0.01 10 10.4660.8 0.18 0.02 0.02 9 10.120.6 0.3 0.1 0.1 8 9.660.5 0.3 0.2 0.2 7 9.3970.5 0.24 0.26 0.24 7 9.4480.5 0.25 0.25 0.25 7 9.4420.4 0.3 0.3 0.3 7 9.3130.333 0.333 0.333 0.333 6 9.2970.35 0.35 0.3 0.35 6 9.3210.35 0.33 0.32 0.35 6 9.3210.36 0.32 0.32 0.36 6 9.3280.38 0.31 0.31 0.38 6 9.329If p1 = p2 = p3 = 1=3, then s is not equal to m � 2=3, as it seemsintuitively. For example, if m = 1000, optimal variant s = 661, but notat all s = 667.These methods we can apply for four stacks.3 Two-level memoryNow that we have examined how stack over
ows and under
ows occur inprogram execution, how should they be handled? Four possible ways ofhandling spills are [4]:1. A very large stack memory. The simplest way to solve the stackproblem is simply to assume that stack over
ows will never happen.WISC CPU/16 uses this method with a stack size of 256 elements.2. Demand fed single-element stack manager. To implement this strat-egy, the stack bu�er is set up as a circular bu�er with a head andtail pointer. A pointer to memory is also needed to keep track of the

On the problem of optimal stack control 99top element of the memory-resident portion of the stack. Whenevera stack over
ow is encountered, the bottom-most bu�er-resident el-ement is copied to memory, freeing a bu�er location. Whenever anunder
ow is encountered, one element from memory is copied intothe bu�er. This technique has the appeal that the processor nevermoves a stack element to or from memory unless absolutely nec-essary, guaranteeing the minimum amount of stack tra�c. RISCprocessors use this method for local scalars and procedures argu-ments management [5, 6, 7].3. Paging stack manager. An alternative to the demand-fed strategy isto generate an interrupt on stack over
ow and under
ow, then usesoftware to manage the stack spill. This approach uses less controlhardware than the demand-fed method, but requires a stack bu�erthat is somewhat bigger to reduce the frequency of the interrupts.The general strategy used in this scheme is to have limit registerspointing to locations near the top and bottom of the stack bu�erspace. When an instruction causes the stack pointer to be less thanunder
ow pointer, a half-bu�er full of elements is copied from pro-gram memory. When an instruction exceeds the over
ow pointer, ahalf-bu�er full of elements is copied into program memory. The pag-ing scheme allows arbitrarily sized sections of a large stack memoryto be used by di�erent procedures on a time-sliced basis. Because ofthis, the stack bu�er appears as a section of special memory, not asa circular bu�er. Therefore, in practice, a stack over
ow actually in-volves copying a half-bu�er of elements to memory, then relocatingthe other half-bu�er to place it at the start of the stack bu�er area.RTX2000 and RTX32P both use this method for stack management.4. An associative cache. This method involves signi�cant hardwarecomplexity but does not provide any advantage over the previouslymentioned methods for stack machines, since stack machines do notskip about much in accessing their stack elements.The \demand" method always swaps one element and the \paging"method swaps half of the fast memory. We want to determine the optimalnumber x0 of stack elements in the fast memory, if some probabilisticcharacteristics of stacks and time characteristics of memory are known.

100 Andrew V. Sokolov3.1 Single stack in two-level memory3.1.1 Case 1. Without taking into account the cost of swappingWe now consider the case of a single stack.Without taking into account the cost of swapping, the problem reducesto the search of the initial state x0 of the 1-dimensional random walk, thatmaximizes the expected walk time until absorption in the states �1 andm + 1. The model reduces to the problem of gambler ruin, when thecommon capital of gamblers equals m+ 2 and the �rst gambler's capitalequals x0 + 1.In the case of �xed information deletion probabilities (q) and insertionprobabilities(p) there is an analytical solution of the respective di�erenceequation for the game time [8] and the optimal value x0 may be derivedanalytically and looks as follows:x0 = 8>>><>>>: log qp "�(q=p)m+2 � 1� p(m+ 2)q ln(q=p) # ; if p 6= q :m2 ; if p = q = 1=2 ;3.1.2 Case 2. Swapping costs are taken into accountIf swapping costs are taken into account, then as an optimization criterionwe can choose the average time of access to the top of stack. In the presentpaper we consider a generalization of the problem stated in [9] and presentan optimization criterion in terms of cache memory theory [10].Similar formulation of the problem was discussed in [11] as well. Inthis paper it has been proposed in over
owing to relocate k elements offast top of stack into the secondary memory and to relocate the rest upperelements to the start of fast memory, but in emptying of top stack it hasbeen suggested to relocate k elements from the secondary memory intothe fast one.Unfortunately, in modeling and in algorithm analyzing an inaccuracywas committed. The value Dk is the mean time until memory over
ow orunder
ow is involved in the optimization criterion, if the process beginsfrom the state k (the number of stack elements in fast top). But we fallinto this state only after under
ow, while after over
ow we pass into the

On the problem of optimal stack control 101state m� k + 1 and, consequently, in the optimization criterion Dm�k+1must be used but not Dk. In our model the number of elements in fastmemory, but not the number of relocated elements is used as a parameter,and the probability of over
ow as well as of under
ow are taken intoconsideration.Let t0 denote the access time to the top of the stack in fast mem-ory, t1|the transfer time of one element in fast memory, t2|the accesstime to second-level memory, t3|the time of swapping one element be-tween di�erent memory levels.According to the architectural solutions of loss function in states [7],relocations can have di�erent forms and, therefore, we'll consider somepossible variants of stack top implementation.1. For example, for \paging" method loss function, speci�ed in states,takes the formf(x) = t0 ; f(�1) = t2 + t3 � x0 ;f(m+ 1) = t2 + t3 � (m+ 1� x0) + t1 � (x0 � 1) :In this case we suppose that in under
owing of the top of stack x0elements are relocated from the secondary memory into the bu�er,while in over
owing m+ 1� x0 elements are kept in the secondarymemory and x0�1 elements are relocated into the start of the bu�er.Then, after the insertion of a new element we have x0 elements in thebu�er, and the new phase begins and continues until the next over-
ow or under
ow. We assume that, when elements are relocated,the loss is proportional to the number of relocated elements.2. In over
owing, it may be considered that the relocation of elementsin the bu�er does not depend on the number of elements and takesa �xed time t. Then f(m+ 1) = t2 + t3 � (m+ 1� x0) + t:3. For the circular stack bu�er f(m+1) = t2+(m+1�x0) � t3, sincein contrast to the previous case, at stack over
ow upper elements ofstack are not relocated into the start of the bu�er.Depending on the apparatus solutions, loss functions can have an-other form.

102 Andrew V. Sokolov4. It can be assumed that the swapping between memory levels is im-plemented so that the time of relocation does not depend on thenumber of relocated elements. Then f(�1) = f(m+ 1) = t2.5. The implementation with copying is possible in background mode,and then f(�1) = t2 + t3 � x0, f(m + 1) = 0: In this case stackelements storage in memory is not required at over
ow, but morecomplex equipment is necessary, and the access time to the top ofstack increases signi�cantly in fast memory.There are some other possible variants of architectural solutions. Forexample, in [7] it was proposed for RISC processors to set up windows ofvariable size, which is determined during the run of procedure. The math-ematical model can be described approximately as a random walk, sincein this case the probability of relocation from the state x to x� l (returnfrom the procedure of length l) depends on the length of procedures instacks, that is a non-Markov process takes place.Now we consider the average coe�cient of losses, which equals the rationumber of addresses to memory, called swapping, to a general number ofaddresses. For the stack memory this coe�cient equals 1=T (x0), whereT (x0) is the expected walk time until absorption. The average time ofaccess equalsF (x0) = 1T (x0)C(x0) + T (x0)� 1T (x0) t0 = t0 + C(x0)� t0T (x0) ;where C(x0) is average losses for swapping in states �1 and m+ 1.C(x0) = px0;�1f(�1) + px0;m+1f(m+ 1) ;where px0;�1 is the probability that starting at x0 we are absorbed in �1,px0;m+1 is the probability that starting at x0 we are absorbed in m+ 1.The objective of our study is to �nd the value x0, where the averagetime of access to the top of the stack F (x0) would be minimal.1. Let p = q = 1=2. Thenpx0;�1 = 1� x0 + 1m+ 2 ; px0;m+1 = x0 + 1m+ 2 ;T (x0) = (x0 + 1)(m+ 1� x0) ; see [8]:

On the problem of optimal stack control 103While calculating the derivative of the function F (x0) on x0, it canbe shown, that the optimal value x0 can be expressed using the followingformulas for the parameters, which are of interest in practice. Since onlyintegral numbers are physically meaningful, we have to choose the bestvalue out of
oor(x0) and ceil(x0) as an integral optimal value.Variant 1. x0 = �b+pb2 � 4ac2a ;where a = t1m+ t3 ,b = �2t0m+ 2t1m+ 2t2m� 2t3m� 4t0 + 4t2 � 2t3 ,c = t0m2� t2m2+ t3m2+2t0m+ t1m� 2t2m+2t3m+ t3 .Variant 2. x0 = �b+pb2 � 4ac2a ;where a = t3 + t ,b = �2t0m+ 2t2m� 2t3m� 4t0 + 4t2 � 2t3 + 2t ,c = t0m2 � t2m2 + t3m2 + 2t0m� 2t2m+ 2t3m+ t3 + t .Variant 3. x0 = �b+pb2 � 4ac2a ;where a = t3 ,b = �2t0m+ 2t2m� 2t3m� 4t0 + 4t2 � 2t3 ,c = t0m2 � t2m2 + t3m2 + 2t0m� 2t2m+ 2t3m+ t3 .Variant 4. x0 = m2 :Variant 5. x0 = m :These are some results of calculation using given formulas, as an ex-ample. Let us take some constants from [5] and [11]. Let t0 = 1, t2 = 30,t3 = 16, t1 = 1, t = 8. Optimal values x0 and corresponding values ofmean access time F (x0) for the �rst three variants of top stack organiza-tion and several values m are presented in Tables 2{4.

104 Andrew V. SokolovTable 2. Variant 1 of top stack organizationm 8 16 32 64x0 3 5 10 16F (x0) 5.042 3.051 2.025 1.51F (m=2) 5.12 3.08 2.04 1.518Table 3. Variant 2 of top stack organizationm 8 16 32 64x0 3 6 12 23F (x0) 5.142 3.068 2.022 1.506F (m=2) 5.2 3.086 2.028 1.508Table 4. Variant 3 of top stack organizationm 8 16 32 64x0 3 6 13 25F (x0) 5.008 3.027 2.011 1.503F (m=2) 5.040 3.037 2.014 1.504It is seen from the tables that the mean access time to the top of stacktends to t0 = 1, while the fast memory size increases. Notice that in allvariants of architecture x0 6= m=2, although in practice, for example, inthe \paging" method x0 = m=2 is used.2. If p 6= q then a numerical solution of the problem is proposed.In some applications, it is considered that a more adequate model ofstack behavior is that, in which alongside the possibility of increase ordecrease of the stack length, allowance is made for the stack length to beunchanged. In this situation the model changes are apparent. A particletransfers from the state x into x � 1 with the probability p1, into x + 1with the probability p2, and into x with the probability p3. It can beshown that the solutions of the discussed problems remain valid, and onlyp and q are replaced for p2 and p1.

On the problem of optimal stack control 1053.2 Two stacks in two-level memoryThis problem was originally posed by Knuth and formulated as follows.Let two stacks grow and collide inside a shared memory of volume m. Inthis case the location of their collision may be considered as a randomvariable. It is known that at each stage an element may be popped fromthe stack with the probability 1�p and some information may be pushedinto one of the stacks with the probability p. Let M(m; p) denote theexpectation of the random variable max(k1; k2), where k1 and k2 are theheights of the stacks collided.D. Knuth [1] posed the problem to construct the mathematical modelof this process and to �nd the form of the function M(m; p).In [12, 13] the mathematical model of the process has been constructedas the two-dimensional random walk in a triangle with two re
ectingboundaries and one absorbing boundary. The algorithm of computingM(m; p) was proposed for the �xed parameter m. In order to solve theproblem, the Markov chain theory was used.In [14{18] the asymptotic behavior of stack sizes at the instant of theover
ow, as well as the time till the memory over
ow were investigated.In the present paper we consider a generalization of Knuth's problem.We suppose, that in the case of memory over
ow the process does notterminate. Instead, swapping with the second level memory occurs, andtops of stacks in fast memory transfer into some state, which becomes thestarting position of subsequent computing. Our task is to �nd this state.The tendency is to have as few swappings as possible, but the swappingdoes occur when the memory is over
owed and the tops of the stacks areemptied. Hence, we have to search for the state, where the mean time tillswapping would be maximum, provided the process starts from this state.Let x1, and x2 denote the current stacks' heights. Then the 2-dimensional random walk in the integer lattice space, where x1 � 0,x2 � 0, x1 + x2 � m, is used as a mathematical model. The probabilityof moving out of the position (x1; x2) to the left is q1, to the right|is p1,downward|is q2, upward|is p2, and p1 + p2 + q1 + q2 = 1:The objective of our study is to �nd the state s0 = (x(0)1 ; x(0)2), wherethe mean time of walk to the absorption at the lines x1 + x2 = m + 1,x1 = �1, x2 = �1 would be maximal, provided the process starts fromthe state s0.

106 Andrew V. SokolovThis problem has been solved using the Markov absorbing chain theoryresults [19]. An algorithm of numbering the states was proposed, whichmade it possible to estimate the transition matrix corresponding to theMarkov chain.Q = 0BBBBBBBBB@
O Qm O � � � O O OPm O Qm�1 � � � O O OO Pm�1 O � � � O O O� � � � � � � � � . . . � � � � � � � � �O O O � � � O Q2 OO O O � � � P2 O Q1O O O � � � O P1 O

1CCCCCCCCCAwhere O is a zero matrix, Qk is a matrix of size k+1 on k, Pk is a matrixof size k on k + 1.Qk = 0BBBBBBB@ q1 0 0 � � � 0q2 q1 0 � � � 00 q2 0 � � � 0� � � � � � � � � . . . � � �0 0 0 � � � q10 0 0 � � � q2
1CCCCCCCAPk = 0BBB@ p1 p2 0 0 � � � 0 00 p1 p2 0 � � � 0 0� � � � � � � � � � � � . . . � � � � � �0 0 0 0 � � � p1 p2 1CCCAThe algorithm as well as computational programs were developed forsolving this problem. Since the program requires �nding the inverse ofthe matrix of dimension m2, special methods of storing sparse matrixeswere involved. Some results of numerical experiments were obtained. Ina symmetrical case for �xed probabilities p1 = p2 = q1 = q2 = 0:25,it was found that x(0)1 � x(0)2 � m3 .4 ConclusionIn practice, the probability characteristics of stacks depend on numerousfactors. In the majority of applications, at the beginning of work the in-sertion into a stack is more probable, in the middle of work the insertion

On the problem of optimal stack control 107and the deletion are equally probable, and at the end deletion is moreprobable, as the work starts and �nishes with an empty stack. For theimplementation of optimal algorithms of stack control, the investigationof stack behavior is required with di�erent input data. Such investigationhas been carried out in creating RISC processors. Six speci�c programs(fractal generator, Fort compiler, Hanoi towers, N-queens problem) wereanalyzed for \demand" method [4]. In these programs maximal stack sizewas equal to 52 elements for Hanoi towers. In [20] stack behavior for animplementation of procedures was investigated in the interests of the pro-ceject Bell Labs C Machine. In their experiments the stack depth reached1106 words using compiler PDP-11. Certainly, it would be interesting tocarry on the experiment and to compare practical and theoretical optimalmethods of stack swap implementation using concrete programs.Although it is di�cult to say, what nearest prospects computers withstack architecture possess, their evident pro�ts in the range of real timeembedded control applications such as small size, high processing speedand excellent support of interrupt handling allow to hope that the conceptof stack architecture in its spiral development would be embodied in newprocessors. In this connection, it should be noted that the virtual Java-machine, for example, is a stack machine [21]. In any case, stacks due tothe fundamentality of recursion principle in informatics, will always be ofimportance for the implementation of the software and hardware supportof computers.AcknowledgmentsThe author would like to thank S. S. Lavrov, E. A. Zhogolev, P. J. Koop-man and V. V. Antonov for stimulating discussions.References[1] D. E. Knuth, The art of computer programming. Vol. 1. Addison-Wesley, Reading, MA, 1976.[2] S. Avierri, Paired sequential lists in a memory interval. Inform. Pro-cess Lett, No 8, 9, 10, 1979.[3] A. Sokolov, Optimal Dynamic distribution of non-page virtual mem-ory. PhD Thesis, LSU, 1981. (in Russian)

108 Andrew V. Sokolov[4] P. J. Koopman, Stack Computers. Ellis Horwood, 1989.http://www.cs.cmu.edu/~koopman/stack computers/[5] Y. Tamir, C. Sequin, Strategies of control register's �le. IEEE Trans.Comput. c-32(11), 1983. p. 977.[6] D. A. Patterson, C. H. Sequin, Reduced Instruction Set VLSI Com-puter. Proceedings of the 8th Symposium on Computer Architecture.No 6, pp. 72{86, 1980.[7] M. G. H. Katevanis, C. H. Sequin, D. A. Patterson, and R. W. Sher-burne, RISC:E�ective Architectures for VLSI Computer. VLSI Elec-tronics. Microstructure Science, vol. 14, (ed. N. G. Einspruch), 1986.[8] W. Feller, An introduction to probability theory and its application.Vol. 1, Wiley, New York, 1964.[9] V. Mazalov, A. Sokolov, About optimal dynamic storage allocation.Control in dynamic systems, Leningrad, 1979. (in Russian)[10] T. Kohonen, Contents-Addressable Memories. Springer-Verlag, 1980.[11] Hasegava M., Shigei Y., High-speed top-of-stack scheme for VLSIprocessor: a management algorithm and its analysis. Proceedings ofthe 12th Symposium on Computer Architecture, pp. 48{54, 1985.[12] A. Sokolov, About storage allocation for implementing two stacks. Au-tomation of experiment and data processing, Petrozavodsk, pp. 65{71, 1980. (in Russian)[13] A. Sokolov, On the problem of optimal stack control in two level mem-ory. Probabilistic methods in discrete mathematics, Proceedings ofthe Fourth International Petrozavodsk Conference VSP, Utrecht, TheNetherlands, pp. 349-351, 1997.[14] A. C. Yao, An analysis of a memory allocation scheme for implemen-tating stacks. SIAM J. Computing. No 10, pp. 398{403, 1981.[15] P. Flajolet, The evolution of two stacks in bounded space and randomwalks in a triangle. Lec. Notes Computer Sci., vol. 223, pp. 325{340,1986.

On the problem of optimal stack control 109[16] G. Louchard and R. Schott, Probabilistic analysis of some distributedalgorithms. Lect. Notes Computer Sci., vol. 431, pp. 239{253, 1990.[17] G. Louchard, R. Schott, M. Tolley, P. Zimmermann, Random walks,heat equation and distributed algorithms. J. Comput. Appl. Math.,vol. 53, pp. 243{274, 1994.[18] R. S. Maier, Colliding Stacks: A Large Deviations Analysis. RandomStructures and Algorithms, No 2, pp. 379{421, 1991.[19] Kemeny J. G., Snell J. L., Finite Markov Chains. Van Nostrand,Princeton, New Jersey, 1960.[20] D. R. Ditzel., H. R. McLellan, Register Allocation for Free: The CMachine Stack Cache. Proc. Symp. Archit. Support Progr. Lang.Oper. Systems, ACM 0-89791-066-4 82/03/0057, pp. 48{56, 1982.[21] A. Taivalsaari, Implementing a Java Virtual Machine in the JavaProgramming Language. Sun microsystems, Technical Report Series,March 1998.

