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Abstract

In the paper we apply the so—called regenerative approach to
constructing confidence intervals for the steady—state average of the
basic queuing processes. A few numerical results show that the ex-
tended (weak) regenerative approach leads sometimes to reduction
of simulation time.

1 Introduction

Many queuing processes are too complex to be investigated by pure an-
alytical methods or by classical statistical procedures only. These proce-
dures deal with independent and identically distributed (i.i.d.) random
variables. At the same time real-life stochastic processes have complex
correlation structure (strong dependence between values of the process).
For instance, consider a waiting time process W = {W,} in a general
system GI/G/1, where {W,} is the waiting time of n—th customer in
the queue. Let us denote {t,,}—arrival instants, {7, = t,+1 — t, }—i.i.d.
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interarrival times, {Sp}—i.i.d. service times. The following relation is
well-known [1]:

W1 = max(0,W,, + Sp, — 1), n > 0.

Variables {W),} are strongly correlated (during busy periods) and this
dependence causes much problems during simulation:

— is corresponding estimate consistent and unbiased?
— how to construct the confidence intervals?

— how to choose the starting and finishing points of the simulation
procedure (to remove the influence of transient period)?

The so—called regenerative approach was developed by W. L. Smith
in the middle of 50th [10] and nowadays it found wide applications, in
particular, to simulating of queuing networks. This approach is based on
the fact, that each time the network becomes empty, it starts a new regen-
eration cycle and all cycles are i.i.d. It is then possible to obtain reliable
estimates of cycle characteristics using the classical statistical properties
of sequences of i.i.d. random variables. This classical approach is well-
known and we will not discuss it in this paper.

2 Classic regeneration

To extend the possibilities of the regenerative approach we consider the
so—called weakly regenerative processes now. [1, 7, 5]. This definition can
be obtained from the definition of strong regeneration by the replacing
the condition (ii) by the following weaker condition:

(ii) ©3,(X, ) does not depend on (Bo,...,0k), for all k >0

In other words, weak regeneration admits dependence between r.c’s
but their lengths {a,,} stay i.i.d. Let us get back to our examples.

Example 1. Consider m—server node GI/G/m. We introduce the

following event (depending on index n): £ = { there are m successive

customers n,..n+m—1: each finds an empty new server } Then on the
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event £ the discrete time point n + m — 1 is weak r.p. for any (discrete—
time) queuing process.

Example 2. Suppose that in an open network the following event
holds: {there is a customer which crosses the network "without contacts"
with other customers}. Then a weak r.p. is the next arrival point after
this "crossing" (see [5,7] for more detail).

When an arbitrary dependence between the r.c.’s is assumed, we may
apply the following version of the central limit theorem [2] (see also [3]):

If {Z;} are m—dependent identically distributed random variables with
zero expectation and VarZ? < oo, then

k
> i1 Zi
—==1L " = N(0,1), as k — oo.

A/ Var Zle Zz

We denote Z; = Y; — a;EX (EZ; = 0). To estimate Var{Zle Zi},
we can apply Cauchy—Bunyakovsky inequality. It gives us the following

result:
n

n n—1
DO Z) =) DZi+2) cov(Zi, Zis1) =

i=1 i=1 i=1
nDZ; +2(n — 1)cov(Zy,Z5) =
nDZy +2(n —1)E(Z, - Z;) < nDZy 4+ 2(n — 1)\/E(Z,)2E(Z5)? =
nDZy +2(n— 1)E(Z)*> = (3n —2)DZ;

This allows us to obtain the following 100(1 — 2v)% confidence interval
for the characteristic E{f(X*)} (see [6])

I(n) = |#(n) zl_ws(n)_\/3n - Q,f(n) N zl_ys(n)_\/3n -2

Ny, noy,

Hence, one can construct confidence intervals for various steady—state
characteristics of the network process {X} (waiting time, sojourn time,
queue-size) using weak or strong regeneration.
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3 Numerical results

Now we consider some numerical results of the queuing process simulation,
where the number of weak r.p.’s appear essentially more frequent than
the strong r.p.’s. It should be noted that in each experiment we use 1000
customers (observation series) and each series is repeated 30 times.

Example 1. Let us consider the GI/G/3 system with the service time
distribution (first column contains values of random variable and second
one—the corresponding probabilities):

2, 0,2
s = { 0,6, 0,1;
0,7, 0,7.
and interarrival time distribution

0,28, 0,04;
T= { 1, 0,03;
0,57, 0,93.

The following results are obtained: 10 strong r.p.’s and 600 weak r.p.’s.

Example 2. In GI/G/3 system with service-time distribution being

6, 0,9;
s = { 10, 0,09;
100, 0,01.

and interarrival time distribution

_[3 173
"7, 2/3;

there are 1 strong r.p. and 740 weak r.p.’s.
Example 3. In GI/G/5 system with service time distribution

6, 0,9
s = { 20, 0,009;

200, 0,01.
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and interarrival time distribution

_ 2, 1/3;
T, 2/3;

there are 1 strong r.p. and 50 weak r.p.’s.
Example 4. In GI/G/10 system with service time distribution
9.9, 0,9;
s = { 100, 0,009;
200, 0,01.

and interarrival time distribution

2, 1/3
T, 2/3;

there are 1 strong r.p. and 50 weak r.p.’s.

Example 5. For the tandem network with 4 nodes, service time
distribution

U[1,3], 0,95;
s=1 12, 0,04;
15, 0,01.

and interarrival time distribution 7 ~ U[1, 7]

we obtain 2 strong r.p.’s and 98 weak r.p.’s.

4 Conclusion

First of all, we give Figure 1 and Figure 2 which illustrate the numeri-
cal results related to the sojourn time in tandem network considered in
example 5. More exactly, the pictures Figure 1 and Figure 2 show the
dependence between width of confidence intervals (for the sample mean
of the sojourn time), the number of r.c.’s (N) and number of observations
(n) for the strong and weak r.p.’s respectively.
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Figure 1. Estimation by using strong r.p.’s
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Figure 2. Estimation by using weak r.p.’s

We note that if the regenerative structure of the system makes the
appearance of strong r.p.’s impossible, then the observation of the weak
r.p.’s is the only way to construct the confidence interval.

At the same time, the queuing systems have often both strong r.p.’s
and weak r.p.’s. In our examples the number of weak r.p.’s is essentially
greater than the number of strong r.p.’s. This property of the queuing
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process can decrease simulation time in the case when shorter regeneration
cycles imply variance reduction of the corresponding statistical estimates.
(There are a number of settings where shorter cycles are more effective in
the simulation, see, for example, [3].)

In this connection it is very important to describe a class of distri-
butions of interarrival and service times where weak regeneration has
advantage mentioned above. There is a serious foundation to suppose
that the so—called heavy—tailed distribution (the distribution with infinite
variance) has the desired property. We emphasize that applications of the
regenerative approach in network simulation is yet restricted by the strong
regeneration only (for example, [9]). This is an another reason why the
development of weak regeneration approach seems very perspective and
important in the simulation aspect.
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