
FDPW'97-98 Volume 1, 1998Software components in softwaredevelopmentDr. Harri LaineDepartment of Computer Science, University of HelsinkiP.O. Box 26, 00014 University of Helsinki, FinlandE-mail: laine@cs.helsinki.fiAbstractReuse of software has been proposed as a means to reduce thecosts of software production and as a means to ful�ll the ever�growing need for new software. This paper discusses binary soft-ware components as elements of reusability. Requirements for goodsoftware components are discussed. How to design and interconnectcomponents is also discussed. Finding out suitable components re-lies on the metadata that is used in describing components. Re-quirements, structure and transfer of the metadata are examined.1 IntroductionReuse of software has been a goal in software engineering for years. It isclaimed to lead into higher productivity and even better systems. Howeverreuse of software is not as common as might be expected [4]. There aremany reasons for this situation. One of the main reasons is the inabilityto �nd proper pieces of software. If suitable pieces are found they may behard to adopt and adjust into the current case. There are many reasons forthis situation: design methods that provide inadequate support for reuse,attitudes of programmers, insu�cient and hard to get information aboutavailable components. Also the components that are available might notbe as reusable as they were intended to be.In the following chapters we discuss about binary software compo-nents, how they can be reused and the prerequisites for their reuse.c Harri Laine, 1998

154 Harri Laine2 Reusing available software elementsThe traditional form of software reuse is the copy�paste technique. A pieceof code is copied out of one program and then pasted in another programpossibly with minor modi�cations. Typically this type of reuse is mainlyrestricted to the programmer's own code, but sometimes also the softwarearchives of the company are used this way. The programmer knows thathe has done something similar before and tries to utilize this work withminimal e�ort. This type of reuse causes maintainability problems andrelies heavily on the memory of the programmer.Function libraries with or without source code are a more advancedform of reuse. The problem with these libraries is that the traditionalway of design does not easily lead to the functions that are provided inthe library. Another problem is that, if one wants to make adjustmentson the functions, the source code must be available.Reuse of object classes and frameworks makes the adoption and ad-justment of code possible without source code. Inheritance and methodoverriding are the main techniques in reusing classes. Source code is notusually needed. However the classes are programming language depen-dent.Binary software components are pieces of software that are supposedto be used as they are without program modi�cations. Ideally they shouldbe platform and programming language independent. The behaviour ofthe components can usually be adjusted using prede�ned means buildwithin the components.3 Design processDeveloping of an information system starts by the speci�cation of the re-quirements for the new system. These requirements are problem oriented.This problem oriented speci�cation is then transformed into a technicalsolution. In traditional top down design the functional requirements forthe system are stepwise re�ned to �nally obtain the software modules[7]. The resulting modules depend on the original problem and on howthe designer performs the re�nement. The result is thus a problem anddesigner speci�c decomposition of functionality. Even the same program-mer at di�erent times may produce di�erent decompositions for the same

Software components in software development 155problem. Thus it is hard to �nd proper components for reuse.The same applies at least partially to traditional object oriented de-sign. Object oriented design methods [9], [3] propose that we should�rst �nd out the essential classes to model the 'reality'. Then we shouldadd functionality to these classes and complete our design with technicalclasses. This also results into problem speci�c kernel classes and problemspeci�c functionalities for these classes. They might be reusable within thesame application domain or in other systems within the same company.Problem speci�c methods cannot be used as they are in other systems.Thus new methods must be included in the subclasses of the original class.A consequence might be a complex dependency tree of classes and theirsubclasses, that provide methods with partial or even full overlapping offunctionality. Picking up a proper class to reuse becomes di�cult.On the other hand, it is actually the technical classes like buttons, win-dows, text �elds, data stores, etc, that are usually provided for reuse. Theway to separate the application speci�c functionality and the functionalityprovided by these reusable components is then the key issue.4 What are binary software componentsBinary software components are de�ned as modular, reusable, atomic andcompiled software units that enable cross�language and cross�platformapplication development. Components with similar speci�cations shouldbe interchangeable and independently upgradable [5]. Thus, we shouldbe able to use the same binary components in a Visual Basic program inMS�Windows environment and in C++ program in UNIX environment.How can this be accomplished? The same binary code does not work inall current platforms. Thus, the components should either have multipleplatform dependent binary representations to select from, or the binaryrepresentations should not be 'real' ones, as is the case in Java bytecode.Currently there are two main component architectures [10] the Mi-crosoft's COM architecture (ActiveX) [6] and Sun's Java Beans architec-ture [1]. COM architecture strives for cross�language development withinMicrosoft Windows environments. Java Beans are intended for cross�platform development using Java programming language. COM compo-nents are compiled into real binary code whereas Java Beans are compiled

156 Harri Laineto higher level Java bytecode. Ideal components according to the de�ni-tion do not exist.Components are objects and like objects they provide their servicesthrough their public interface. Component's public interface may intro-duce properties, methods and events. Properties expose component's pub-lic attributes. These attributes cannot be referred directly. Instead theremust be accessor methods available for querying and setting the values ofthese attributes.Public methods provide the services of the component. Methods areintended to be called by the program that uses the component. Thisprogram could be called the container of the component.Events are provided to make it possible for the component user to reacton the internal conditions within the component. Components use eventsalso to inform the environment about some external stimuli the componentis exposed on, for example about mouse clicks on the component's screenimage. Events can be considered as signals from the component to theenvironment. If the environment wants to do something related to thesignaled condition, it must provide an event handler for the situation.This event handler contains the code that will be executed in reactionto the event. Events are thus a means to separate the detection of acondition, which is carried out by the component, and the reaction to thecondition, which is carried out by an external software.In practice, events are usually implemented as automatic calls for thehandler functions. The signatures for event handlers are speci�ed in thecomponent's interface. If the programming language provides functionpointers, the calls for handlers can be implemented using pointers to thehandler functions stored within each instance of the component. In lan-guages like Java, that do not support function pointers, a di�erent wayto activate the handlers must be used [1]. Anyhow, the idea is to havecomponent instance speci�c event handlers, not only type speci�c meth-ods. Typically some kind of registration is needed to connect the handlerto the event (Figure 1).5 Design issuesThe guidelines applying to the design of objects and classes apply also tothe design of components. To obtain good reusability component should

Software components in software development 157
event handler

container

component

happened

container initialisation
- include component
- register event
 handler

(handler for X)

register
handler for event X

event X

activate

Figure 1. Use of event handlersbe simple and easy to comprehend. Reusing the guidelines for moduledecomposition [7] we may conclude that a component should have onlyone clearly speci�ed responsibility.A component should be designed so that it is not dependent on anyobject listening to its events and reacting on them in some particularfashion. This makes it possible to reuse the same component in situations,where similar events are produced, but the behaviour should be di�erent.For each event the component user should be aware, if there is supposed tobe only one event handler for the event, or can there be many handlers.If there can be many handlers, the order of their activation should bespeci�ed. It should also be clearly speci�ed, how the component itself

158 Harri Lainereacts on the condition that caused the event and how this reaction iscarried out with respect to the event handlers.In component design events should be de�ned for all cases that mightrequire attention of the container. This results to many events but pro-vides good reusability. Use of events and event handlers is a fundamentalarchitectural level design decision in software development. If we want touse components in our software we must already in the early design takeinto account that components use event based protocols in communicatingwith their containers. If we have not taken this into account, introducingit in a late phase of design may cause major iterations of the design andre�positioning of functionality.Components should be general enough to be usable in many situa-tions. This indicates that they should provide means for customization.Customization usually takes place during program development possiblyusing a dedicated customization software. In customization the program-mer assigns values for the attributes of the component instance. He mayalso make connections between components. When we design componentswe must also design how it can be customized. For complex componentsthe design of customization software might be needed.6 Containers and FrameworksComponents exist and operate within containers. These containers pro-vide the environment for the components to work in. They also providethe means for the co�operation of the components. A container can alsobe a component.Frameworks are collections of classes that provide skeletons for appli-cations. Frameworks usually implement some design patterns, enrichedwith application type speci�c services. Thus we could have for exam-ple drawing software frameworks, case tool frameworks, order processingframeworks and bank accounting frameworks. Also general window basedapplication frameworks are available. Frameworks suit well as containersfor components. As such their task is to provide the connectors to plug�in the components. An in�build customization facility is also needed forconnecting the components to the connectors. In constructing containercomponents one must decide which member component events are trappedwithin the container component and which are delivered outside. Best

Software components in software development 159adaptability is obtained if all the member events are passed through thecontainer. A side e�ect is increased complexity, and complexity is themain hindrance for reuse. Thus, for simplicity it is better to block allof the member component events within the container and if necessarycause new higher level container speci�c events instead to inform the out-side world.All components should be designed in connection to some framework.This binds the components to an architectural design, shows how they areused and how they interoperate with other components.7 Metadata and toolsLocating and using components relies on metadata about the compo-nents. There are di�erent types of metadata: technical, design orientedand business oriented.We call the metadata needed run�time and during compilation as tech-nical metadata. They include type identi�er and type descriptor, descrip-tion of the interface and signatures for methods. Components themselvesor the component environment should provide facilities for querying tech-nical metadata at run�time.Design oriented metadata is used in programming and in design of thesoftware. They include all the information intended for designers in orderto be able to include the components in their systems. This metadatashould contain� a descriptive name for the component,� a general description of the purpose of the component,� detailed descriptions of methods and properties,� detailed descriptions of events and their triggering,� instructions how to customize the component,� description of how the component is related to other components,� working environment,� keywords describing the component,

160 Harri Laine� classi�cation of component into some prede�ned categories,� examples of the use and� bug reports.Business oriented metadata contains information concerning the ac-quiring, distribution and management of the components. Informationabout license conditions, availability and costs should also be included aswell as references, recommendations and comments on the use.Metadata about components should be stored in a repository. A com-pany may build components for itself, but in addition it usually acquiresthem from various sources. Components should thus accompany withmetadata in a format that can be easily loaded in the repository. Thispresupposes a standard for representing and transferring metadata. Suchstandards have been developed, for example the CDIF for CASE�datatransfer [2] and UML for representing object oriented designs [8]. How-ever, component related metadata in such a format is not commonly avail-able. Companies store information about components in their own repos-itories. There is however also demand for global component repositories,kind of component catalogues, that collect information about availablecomponents. The information contents of such a catalogue is outlined inFigure 2. Local repositories might have the same information contents.Designers use metadata about components in designing the software.In addition, computer aided design tools (CASE tools) and programmingenvironments should be able to use the metadata. Currently there are pro-gramming environments, for example Delphi, JBuilder and Visual Basic,for including components in the software. A programming environmentthat supports components should provide� palettes to displaying the available components,� containers to host the components,� facilities (drag and drop) to insert components in containers,� facilities for connecting event handlers to the components,� property and script editors for customizing the components,� tools for constructing new components,

Software components in software development 161
document

url

technicals

size
stability
memory need

property

name
description
type

evaluation

certificate
evaluator
date
opinion

example

example file

general desc.
purpose
name
id

component
version

number
release_date
status
essential changes
environment
etc.deliverable

delivery format
way of delivery
distibutability
licence overview
source included
payment
price, ...

reusable obj

bug

bug_id
description

keyword

keyword

answer

quetion

faq

1

1

*

1

’

1
’

1

*

*

requires

is required

*
1

*

*

*

*

*

1

1

*

Figure 2. Outline class diagram for component metadata

162 Harri Laine� component repository and browser to locate components by match-ing user search criteria.The customizing facilities may be included in the environment. In JavaBeans architecture each component may have its own customizing tools.When designing the software we should also be able to include com-ponents, design patterns and frameworks in our design with similar easethe modern programming environments make it possible to include com-ponents in program code. CASE tools to enable this are not howevercommonly available. These tools should support the use of components,frameworks, design patterns and architecture models on a higher abstrac-tion level than what they are supported in a programming environment.The main interest on design time is to �nd out the proper components andto specify how these components will co�operate within the system. Anessential part of component oriented design software is thus an advancedsearch facility.8 ConclusionReuse of software is one of the factors in order to increase the productivityin software engineering. Properly designed software components promotereuse. Components must however be easy to locate and users must be ableto easily include them in their designs. This presupposed that standard-ized metadata about components and facilities to utilize this metadataboth within a company and also globally are available.References[1] Englander R. Developing Java Beans, O'Reilly, 1997.[2] Ernst J. Introduction to CDIF July 1998, Online version, continu-ously updated: http://www.cdif.org/intro.html .[3] Jacobson I. et al Object�oriented software engineering, a use casedriven approach, ACM Press/Addison�Wesley, 1992[4] Jacobson I., Griss M. and Jonsson P. Making the reuse businesswork, Computer, 30, 10, October 1997, pp. 36�42.

Software components in software development 163[5] Krieger D. and Adler R. M. The Emergence of Distributed Compo-nent Platforms. Computer 31 (3): 43�53 (1998)[6] Microsoft Corp. DCOM Technical Overview, Microsoft Corp., 1996.[7] Pressman R. Software engineering, a practioneer's approach, 4th ed.,McGraw�Hill, 1997[8] Rational Software UML home page, 1998, Online version:http://www.rational.com/uml/[9] Rumbaugh J. et al Object�oriented modeling and design, Prentice�Hall, 1991.[10] Spitzer T. Component architectures, DBMS Magazine, September1997, Online version: http://www.dbmsmag.com/9709d13.html

