
FDPW'97-98 Volume 1, 1998Fault tolerance features of RodainDatabase Architecture for IntelligentNetworksTiina NiklanderDepartment of Computer Science, University of HelsinkiP.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki,FinlandE-mail: Tiina.Niklander@cs.helsinki.fiAbstractFuture telecommunication services will extensively exploitdatabase technology. The persistent and temporal informationneeded in operations and management of the telecommunicationnetworks and services will be kept in databases. The current Intel-ligent Network (IN) recommendations of ITU�T imply that real�time transaction processing capabilities should be provided. Theyalso imply that the database should be fault tolerant, since theallowed down�time is only few seconds per failure.In the research project Rodain the main objective is to de-sign and specify a fault�tolerant real�time database architecturefor telecommunications applications and to implement a prototypebased on that architecture.1 IntroductionNew telecommunication services are less and less based on concrete hard-ware components. They are more based on the existing hardware behavingin a di�erent way. For this change in the service creation a new modelc
 Tiina Niklander, 1998

Rodain Database Architecture 113is needed: the intelligent network concept [3]. It is a telecommunicationnetwork concept, that does not require large modi�cations to the existinghardware or software components when new services are created.The knowledge in the intelligent network is mainly collected in theService Data Function [4]. The actual switching networks accesses theService Data Function (SDF) through Service Control Function every timeit needs the new IN functionalities. A Service Data Function is actuallya database system.The Intelligent Network requirements say that the SDF should beable to process thousands of queries within one second. Although thisrequirement seems quite huge, it is still reasonable as we may have onedatabase serving a number of telephone switches. Each switch can havehundreds, even tens of thousands, actual telephone lines connected to it.The temporal load can in fact climb very high.The SDF must not only answer a huge number of queries, but it mustanswer them fast. A typical telephone user does not want to wait for along time for the dial tone or for the actual call connection. He or sheis used to it happening within few seconds, and the new services are notexpected to take much longer than that.The current telephone system is quite reliable, or at least it is a goalto achieve. The whole switching system is supposed not to be down morethan few seconds per year. It is desirable that the new services of theintelligent network concept are available when ever the basic telecommu-nication network is. Therefore also the database system is allowed to bedown only few seconds at a time.The Rodain Database Architecture is designed to ful�ll the require-ments mentioned above. The Database architecture needs real�time fea-tures for timely answers. Main�memory database is the only possibilityfor timely critical data because some access requirements are so tight thatthe access from disk is not possible. Fault tolerance is the base for highavailability.In this paper we �rst present overview to our database architecturein Section 2. Services of the database system are presented in Section3. Section 4 presents processes used in the functional nodes of RodainDatabase. The fault tolerance features of the Rodain Database prototypeare discussed in Section 5.

114 Tiina Niklander2 Overview of the Rodain Database Archi-tectureThe Rodain DBMS architecture is a real�time object�oriented databasemanagement system architecture. It consists of a set of autonomous Ro-dain Database Nodes (Figure 1) that interact with each other. EachDatabase Node may communicate with one or more applications, andeach application may communicate with one or more database nodes.Applications and database nodes may be geographically distributed.To increase the database availability the Rodain Database Node con-sists of two identical co�operative nodes. One of the nodes is acting asthe Database Primary Node and the other one is mirroring the PrimaryNode. When necessary the Primary and the Mirror Node can switch theirroles. That is done when a failure occurs. When only one node is func-tional we call it a Transient Node. It acts as the Primary Node, but isnot accompanied by a functional Mirror Node.The whole Rodain Database is divided in two parts. Each data itemmay belong to one of the two heat groups: hot or cold data [10]. Theyare stored in di�erent databases within the Rodain Database Node. Hot
Application 1

Application n

RODAIN

 Database Node

Database
Primary
Node

Database

Mirror

Node

RODAIN
Database
Node 1

RODAIN
Database
Node m

Figure 1. Overview of the Rodain Database Architecture

Rodain Database Architecture 115data is stored in a main memory database. All updates are done in mainmemory and a transaction log is maintained to keep the database in aconsistent state. A secondary copy of hot data is located in the MirrorNode. Only a backup copy is maintained on the disk. Cold data isstored in a disk based database. Thus we use a hybrid data managementmethod that is a combination of a main memory database and a diskbased database.Although the Rodain Database Nodes can co�operate and thereforesupport some forms of distribution, the database architecture is not adistributed database architecture. The Rodain Database architecture isbased on the assumption that most of the transactions need to access localdata on one autonomous node. We also assume that there is no replicationbetween Rodain Database Nodes. The data has only one primary copy,but there can be several cached copies of it.Each Rodain Database Node consists of Database Primary Node,Database Mirror Node and a reliable Secondary Storage Subsystem (Fig-ure 2). The Primary and Mirror Node are identical and they can beswitched. Both nodes have a set of subsystems that communicate witheach other. The subsystems are: User Request Interpreter Subsystem(URIS), Distributed Database Subsystem (DDS), Fault�Tolerance andRecovery Subsystem (FTRS), Watchdog Subsystem (WS), and Object�Oriented Database Management Subsystem (OO�DBMS).The Secondary Storage Subsystem (SSS) is a shared disk storage ac-cessed by both the Primary and the Mirror Node. It is used for perma-nently storing cold data database, copies of hot data database, and loginformation.User Request Interpreter Subsystem. The Rodain Database Nodecan have multiple application interfaces. Each interface is handled byone speci�c User Request Interpreter Subsystem. It translates its owninterface language into a common connection language that the databasemanagement subsystem understands. The URISes on the Primary Nodeare active, because the clients communicate only with the Primary Node.On the Mirror Node the URISes are passive or do not exist.Distributed Database Subsystem. A Rodain Database Node mayeither be used as a stand�alone system or in co�operation with the otherautonomous Rodain Database Nodes. The database co�operation man-agement in the Database Primary Node is left to the Distributed Database

116 Tiina Niklander

Watchdog
Subsystem

Wcd

Watchdog control data (Wcd)

Fault-Tolerance
and Recovery
Subsystem

Log acks & recovery commands

 Transaction logs

Object-Oriented
Database
Management
Subsystem

Distributed
Database
Subsystem

Wcd

Distribution operations

Query and update results

Requests and new connectionsUser Request
Interpreter
Subsystem

Wcd

Fault-Tolerance
and Recovery
Subsystem

User Request
Interpreter
Subsystem

Query and update results

Requests and new connections

Log acks & recovery commands

 Transaction logs

Distributed
Database
Subsystem

RODAIN
Database
Nodes

Applications

Secondary
Storage
Subsystem

Object-Oriented
Database
Management
SubsystemWcd

Watchdog control data (Wcd)

Wcd

Distribution operations

Wcd

Watchdog
Subsystem

Database Mirror Node

Database Primary Node

Figure 2. Rodain Database NodeSubsystem. The Distributed Database Subsystem on Mirror Node is pas-sive or non�existent. It is activated when the Mirror Node becomes a newPrimary or Transient Node.Fault�Tolerance and Recovery Subsystem. This subsystem con-trols communication between the Database Primary Node and theDatabase Mirror Node. It also co�operates with the Watchdog Subsystemto support fault tolerance.The FTRS on the Primary Node handles transaction logs and failureinformation. It sends transaction logs to the Mirror Node. It also mustnotice when the Mirror Node stops functioning normally and report thisto the Watchdog Subsystem for switching the node to the Transient Node.

Rodain Database Architecture 117On the Transient Node FTRS stores the logs directly to the disk on SSS.The FTRS on the Mirror Node receives the logs sent by the PrimaryNode's FTRS. It then saves the logs to disk on SSS and gives neededupdate instruction's to the Mirror Node's Database Management Subsys-tem. When it notices that the Primary Node has failed, it informs thelocal Watchdog Subsystem.Watchdog Subsystem. The Watchdog subsystem watches over theother local running subsystems both on the Primary and on the MirrorNode. Upon a failure it recovers the node.On Primary Node when the local FTRS reports the failure of MirrorNode, the WS controls the node change to the Transient Node. Thischange a�ects mostly the FTRS, that must start storing the logs to thedisk. On Mirror Node the failure of Primary Node generates more work.The WS must activate passive subsystems such as URIS and DDS. TheFTRS must change its functionality from receiving logs to saving them tothe disk on SSS.Object�Oriented Database Management Subsystem. This is themain subsystem both on Primary Node and on Mirror Node. It maintainsboth hot and cold databases. It maintains real�time constraints of trans-actions, database integrity, and concurrency control. It consists of a setof database processes, that use database services to resolve requests fromother subsystems, and a set of manager services that implement databasefunctionality. The Object�Oriented Database Management Subsystemneeds the Distributed Database Subsystem, when it can not solve an ob-ject request on the local database.3 Database Manager Services and ServiceLayersThe Database Management Subsystem is divided into �ve layers (see Fig-ure 3). A more detailed version is presented in [12]. The layers are Trans-action Execution Layer, that is the visible layer to application, DatabaseInterface Layer that is the visible layer to common database processes,Object Layer that handles the physical storage structures of objects, GlobalEntity Layer that is the visible interface layer to distribution and repli-

118 Tiina Niklandercation processing in the OO�DBMS, and Real�time Core Layer that im-plements low level database functionality such as real�time and physicaldata control.Transaction Execution Layer provides the interface between appli-cation and database services. Every incoming request is handled as atransaction. Transactions are units of atomicity thus modi�cations doneby a transaction are either committed or aborted as a whole. Transactionsare scheduled according to their type and deadline. The goal of real�timetransaction scheduling is to maximize the number of transactions, thatwill successfully �nish before their deadlines [11].Runtime Transaction Controlling Service accepts new transaction re-quests and redirects them to Transaction Processing Service. RuntimeTransaction Controlling Service also performs transaction scheduling andoverload management. Transaction Processing Service provides for trans-actions upper level services such as transaction committing and aborting.It also communicates with lower layers and passes results to the callingapplication. Schema Manager Service provides maintenance and manage-ment functions for type metadata.Database Interface Layer is the interface between transactions anddatabase services. It also o�ers higher level access to the database as, forexample, attribute and relationship referencing, index handling, queryingby values of an attribute, and query optimization. A full list can be foundin [6]. The complete knowledge of the object model is visible up to thislayer. Requests to lower layers are done with the OID of the accessedobject.Objects are accessed with an Object Manager Service, which pro-vides functions for object fetching and storing, accessing object attributes,methods, relationships etc. Accessing of object instances can be done ei-ther in a sequential manner or with indexes assigned to attributes. Indexmanager service o�ers services for index creation, management, and queryoptimization by index values.Object layer o�ers the Physical Object Manager Service, and the Con-currency Controller Service. These services are the core manager servicefor objects. On this layer the objects are all alike and the actual objectmodel is no longer visible. Object accessing is always done with an OIDof the object.

Rodain Database Architecture 119
Distributed operations

Log entries, hot data image

Distributed operations

Log entries, hot data image

Object Layer Real-Time Core Layer Stored
Database

Global Entity Layer

- Distribution Manager Service
- Replication Manager Service

Query and update results

Queries and updates

New transactions

Transaction

Execution

Layer:

- Runtime
Transaction
Controlling
Service

- Transaction
Processing
Service

-Schema
Manager
Service

Database

Interface

Layer:

-Object

Service

-Index

Manager

Manager
Service

-Physical

Manager
Service

Object

-Concurrency
Control Service

- Physical Data Manager Service
- Recovery Manager Service
- Communication Manager

- Support Services
Service

Tolerance and Recovery
Interface to Fault-

Subsystem

Interface to Distributed
Database Subsystem

Interface to User Request
Interpreter Subsystem

Figure 3. Layers of Database Management Subsystem
Physical Object Manager Service o�ers services for object creation,object deletion, and object accessing. Physical Object Manager Servicemaps OIDs to physical addresses in the stored database. The physicaladdress depends on whether the object accessed is hot or cold, or residesin another database.Physical Object Manager Service uses the Global Entity Layer whenit cannot resolve an object request on the local database. It uses theReal�Time Core Layer services for object storing, fetching, and recovery.Concurrency Control Service allows transactions to run in parallel.Data concurrency control in Rodain Database Node is based on opti-mistic concurrency control methods as presented in [13]. ConcurrencyControl Service also performs validation of local transactions. As a re-sult of validation the transaction is normally committed, but it can beaborted.

120 Tiina NiklanderGlobal Entity Layer o�ers services to all other layers and to specialcontroller processes in order to support distribution and replication in theOO�DBMS. It consists of Distribution Manager Service and ReplicationManager Service.The Distribution Manager Service is a bidirectional service. Whenanother service in the local database wants to access remote database,requests are handled by the Distribution Manager Service. The serviceredirects the request to the other database, which has also the DistributionManager Service as a counterpart. The Replication Manager Service isused to send transaction logs to Mirror Node.Real�time Core Layer implements the core operations of DatabaseManagement Subsystem. This lowest layer consists of Physical Data Man-ager Service, Recovery Manager Service, Communication Manager Ser-vice, and Support Services. The Communication Manager Service andSupport Services are used by all other layers.The Physical Data Manager Service is the only way to access thephysical data stored in the database. It o�ers services for data storage,retrieval, and access estimates. Requests for this service are done with anobject's address and length. The request may also contain the importanceof the requesting transaction.The Recovery Manager Service is the �rst service to gain control onRecovering Mirror Node when the Watchdog Subsystem has started OO�DBMS recovery operations. It returns database into a consistent stateand restarts the database processes.The Communication Manager Service o�ers services to the other man-agers to maintain communication channels to the other subsystems.4 Processes in the Database ManagementSubsystemIn the RODAIN Database Node only Primary Node servers applicationrequests. Therefore, all transactions are executed on the Primary Node.The Mirror Node does not accept connections from the applications. Itstarts transaction processing and accepts application's requests when itbecomes a Transient Node (and later on the Primary Node). The activetransactions are lost when the Primary Node fails. They are not migrated

Rodain Database Architecture 121
Transaction
Process

Committing
Transaction

Index
Updater

Distributed

OID Request

Dispatcher

Runtime
Transaction
Controller

Transaction

Writesets
Read- and

OID Request
Dispatcher

Buffer Manager

Cold Data

Cold Data

Buffer

Log
Writer

Database
Hot Data

Hot Data
Flusher

Cold
Data
Database

Persistent storage
(not in DARTS model)

Synchronized communication
with answer message

To Fault-Tolerance and
Recovery Subsystem

(Log to Mirror Node)

Log
secondary

Hot Data
secondary

To Fault-Tolerance and
Recovery Subsystem

(Hot Data image
during recovery)

Control of process
(not in DARTS model)

Transaction creation
and scheduling

To Distributed Database
Subsystem

(two phase commit)

From User Request
Interpreter Subsystem

To Distributed Database
Subsystem

(OID requests)

To Distributed Database
Subsystem
(transaction transfer)

Process

Process group

Shared memory area

Synchronized communication

Buffered communication

SYMBOLS:

TRANSIENT NODE

Data flow

Asynchronous event

PRIMARY NODE TRANSIENT NODE PRIMARY NODE

Figure 4. Processes in the Primary Nodeto the new Transient Node. The applications notice the failure of PrimaryNode when they receive no response within given time frame.The processes in the Primary Node are presented in Figure 4. Theformalism in the �gure is based on the DARTS software design methodfor real�time system [2] with some additions. Transient Node needs allPrimary Node processes and operations with some extra operations, such

122 Tiina Niklanderas hot data �ushing and log writing directly to the disk. These TransientNode speci�c operations are marked with dashed lines. The Mirror Nodeuses a subset of the operations needed in the Transient Node.Runtime Transaction Controller accepts new transaction requestsfrom URIS, that is connected to the applications. Runtime TransactionController creates a new Transaction Process for each incoming transac-tion and assigns appropriate properties to it. These properties includea deadline and a transaction type. The Runtime Transaction Controllercan deny an incoming transaction request in overload situation. RuntimeTransaction Controller also handles transaction scheduling by adjustingthe priorities of each transaction based on selected scheduling policy. Thepriorities are then used by the operating system for process scheduling.Transaction Process is started to handle requests coming from anapplication. These requests can be either a single request that invokes aprespeci�ed transaction method or a queue of object method calls. Trans-actions are transient processes which are created at the point of transac-tion start and killed when transaction terminates. When a transactionis restarted due to concurrency control, the process instance is not re�created. Instead the process executes the same transaction again.OID Request Dispatchers o�er services for object reading and writ-ing, transaction validating and committing. Note that OID Request Dis-patchers validate and commit only local transactions, thus the responsi-bility of distributed committing is left to the transaction processes.The OID Request Dispatchers have one common request queue. Theyserve the arriving requests in the priority order. The ORDs are identicaland each one can serve any arriving request. The object access is basedon the object's OID only. For example, when a Transaction Process asksfor an object to be read, it sends the object OID accompanied with theread command to the request queue. One of the ORDs gets the requestfrom the queue and executes it. The result message containing full orpartial object is sent to the requesting Transaction Process via a bu�eredcommunication channel.A data accessing method depends on where the object is physicallystored. When an accessed data is in the hot database, the OID RequestDispatcher computes direct physical address to the hot data database andperforms the requested operation. When accessing cold data in the cold

Rodain Database Architecture 123database, it �rst tries to access data in cold data bu�er and if it is notthere, the request is forwarded to Cold Data Bu�er Manager. In the caseof remote object, the request is forwarded to Distributed OID RequestDispatcher. All objects not found in the local databases are considered tobe remote.Committing Transaction is only a more prioritized phase in theTransaction process execution. The Transaction Process is currently com-mitting the transaction it is executing. The priority of Committing Trans-action is higher than the priority of any other Transaction Process stillin transaction execution phase. If the transaction does not con�ict withother transactions, the Transaction Process writes modi�ed data to thedatabase and the transaction is then �nally committed. Transaction com-mit is done, when all data modi�cations and index modi�cations are suc-cessfully stored into safe storage via the Log Writer process.Index Updater takes care of attribute index updating during the trans-action commit phase. Indexes are updated after the committing transac-tion is successfully validated.Cold Data Bu�er Manager receives cold data read and write requestsfrom the OID Request Dispatchers. Requests are based on physical ad-dress of the accessed data. Read requests are �rst resolved from the bu�erpool. When speci�ed data item does not exist in the bu�er pool, the itemis fetched from the disk. Write request cause written data items to bepinned into memory. In the case of transaction commit, the modi�eddata items are written into disk and unpinned before the commit is ac-cepted. Thus, the disk database never contains any uncommitted dataand always contains all committed data.Distributed OID Request Dispatcher is a special database processthat maintains the connection to the Distributed Database Subsystem. Itreceives OID read requests from local OID Request Dispatcher and for-wards these requests to remote database via Distributed Database Sub-system. It also accepts incoming remote OID read requests and satis�esthese requests with a co�operation of local OID Request Dispatcher.Log Writer handles log write commands. When the Primary Nodeis acting normally, the requests are passed to the Mirror Node. Whenthe Primary Node is acting as the Transient Node, log write requests are

124 Tiina Niklanderwritten directly to disk. In both cases, the write process is synchronous,thus a log write operation is �nished only when it is guaranteed, thatentry to be written is permanently stored either on the Mirror Node oron the disk.Hot Data Flusher writes hot data contents into disk storage, thus cre-ating a disk copy of the main memory database. This process is normallyused only in the Mirror Node, but it can be used also in the TransientNode.5 Fault Tolerance Features in RodainDatabaseThe term fault tolerance has been de�ned in numerous ways, see for ex-ample [1] and [7]. Basically every de�nition carry the idea of maintainingthe system's functionality inspite of some failures. This can be achievedby restoring the system to some previous point or by adding redundancyto the system. The three di�erent types of redundancy (physical resource,time and information redundancy) all provide a di�erent way of addingredundancy to the system.Replication of physical resources is the most common way of addingredundancy. It is also the base of fault tolerance in the Rodain Database.We use only two similar nodes. The architecture does not hinder usage ofmultiple mirror nodes if required.Time redundancy mechanism is not used in the Rodain Database. Itis not very feasible solution for a real�time system where the amountof time needed for execution is important. The re�execution needs extratime, which can more easily lead to missing the deadline specially in failuresituation. This can be avoided by adding extra capacity that is used onlyin failure situation. Since the failures are quite rare it is not very coste�ective.Information redundancy is also not used in the current RodainDatabase prototype. Instead we simply assume that the information doesnot change due failures such as memory corruption or erroneous databaseupdate. If this assumption does not hold, then the Rodain Database needssome mechanism to maintain the information consistency.

Rodain Database Architecture 1255.1 Failure semantics of the serverThe fault�tolerance of any system is based on the knowledge or assump-tion of the failure behaviors of the services or servers it uses. Cristian[1] calls this behavior the server's failure semantics. The servers formabstraction hierarchies, where each server masks, or tries to mask, thefailures of servers it uses.Our current implementation of the Rodain Database prototype as-sumes that the computing hardware has crash failures only. This meansthat we assume the hardware to perform correctly until it simply stopsfunctioning. We do not allow omission or performance failures on thecommunication channel either. Instead we require that the communica-tion channel also has only crash failure semantics. This can be achieved,since our prototype has multiple networks between the nodes.We have lowered the probability of total system crash by using twoseparate, identical nodes. Only if both nodes fail at the same time thewhole database system will stop functioning from the clients point of view.For the client application the whole Rodain Database Node may seem tohave omission failures. They can occur when the Primary Node fails andactive transactions are lost. The client application gets no reply and cansafely assume that it never will receive any reply.Even the failure of disk subsystem can be masked if both Primary andMirror Node remain functional until the database copy on disk has beenrebuild. Because this is expensive, takes a long time, and fault tolerantdisk systems such as RAID exists commercially, we have assumed the disksubsystem used in the Rodain Database Prototype to be failure free.5.2 Node ReplicationThe group of replicated server nodes can be organized in di�erent ways.In the Rodain Database we have chosen to make the Primary and MirrorNodes loosely synchronized. The tight synchronization is not cost e�ectivewith the failure assumptions we have made. Generally it would only addextra overhead without gaining much. The only advantage would be thatthe Mirror Node could continue execution of active transactions. Becausethe telecommunication area does not need ultra reliable real�time systems,we can use the computing power to productive work and allow the clientapplication to see more failures.

126 Tiina NiklanderIn the Rodain Database Prototype the Primary Node executes all theoperations. Mirror Node only follows its state changes, but makes thechanges bit later in its own state. This reduces the time needed betweenfailure of Primary Node and execution start on Mirror Node. By keepingthe state of Mirror Node quite close to the state of the Primary Nodewe can meet the requirement of downtime restricted to few seconds pereach failure. Other alternatives are not as appealing. If we keep the Mir-ror Node totally passive and have to rebuild the database contents onthe Mirror Node from scratch each time Primary Node fails the down-time would be minutes instead of seconds. A more expensive solutionwould be to keep the database in a reliable memory such as Flash or bat-tery backup memory, that is not lost in most hardware failures. Even ifthe nonvolatile memory maintains the database content, the processor isnot available until the computing node has recovered. Also the usage oflarge amounts of nonvolatile memory requires a special computer. As thecurrent telecommunication databases are based on special hardware weare more interested in seeing how they can be implemented on ordinarycomputers.To maintain the synchronization between Primary and Mirror Nodesthe state changes must be past from Primary to Mirror Node. In theRodain Database we use transaction logs to pass information of databasemodi�cations from Primary to Mirror. Logs are the basic mechanismfor databases to keep track of database modi�cations. Traditionally theyare used to return the database back to a consistent state if somethingfails. Therefore in the Rodain Database the Mirror Node is continuouslyrecovering its database copy based on the arriving logs.Even though the main reason for passing the logs to the Mirror Node isto update the database copy on it, the Mirror Node can help the PrimaryNode in log handling. The Mirror Node can behave as a separate logstoring processor (see [8] or [9]). It is responsible for storing the logs ina stable storage on disk. The logs on disk are needed only when eithernode has failed and is recovering.The log storing mechanism on the Rodain Database di�ers from themechanisms presented in [8] and [9]. They both order the logs on a pagebasis because they use a disk based database. Since the critical part of theRodain Database is a main memory database we can use transaction basedlog ordering presented in [5]. The logs of one transaction are grouped

Rodain Database Architecture 127together and stored adjacently. This makes the recovery of failed nodeeasier because it can follow the storage order of the logs when updatingthe recovering database.6 ConclusionIn this paper we have given an overview of our prototype database systemRodain. It is designed to ful�ll the requirements for Service Data Functionand Service Data Point presented in the Intelligent Network concept. It isa real�time database that provides deadlines and criticality value for eachtransaction. It is also an object�oriented database, that allows storageof data and the methods accessing them. The time critical part of thedatabase is stored fully in the main memory to keep the data access timeshort and to meet the execution deadlines of the real�time transactions.The Rodain Database is also a fault tolerant service. It containstwo nodes that can behave on either role as Primary or Mirror Node.The database service assumes that the underlying hardware and softwarecomponents are either failure free or have only crash failure semantics.The fault tolerance functionality of the Rodain Database is based on thetransaction logs. The logs are used to maintain the state of the mirroreddatabase copy close to the state of the primary database. Also the logsare used when a failed node is recovering back to operation.AcknowledgementsThis work has been carried out in the research project RODAIN (1996)funded by the Finnish Technology Development Center (TEKES) togetherwith Nokia Telecommunications, Solid Information Technology and Son-era. The author wants to thank Kimmo Raatikainen, Jukka Kiviniemi,Jan Lindström, Pasi Porkka, and Juha Taina from the Department ofComputer Science in the University of Helsinki for the fruitful discus-sions and valuable comments during the research. The industrial part-ners (Jukka Aakkula and Asko Suorsa from Nokia Telecommunications,Jussi Ollikainen and Jari Vänttinen from Sonera, and Kyösti Laiho fromSolid) have provided useful information and feedback comments duringthe project.

128 Tiina NiklanderReferences[1] Flavin Cristian Understanding fault�tolerant distributed systems.Communications of the ACM, 34(2):57�78, February 1991.[2] H. Gomaa A software design method for real�time systems. Com-munications of the ACM, 27(9):938�949, September 1984.[3] ITU Q�Series Intelligent Network Recommendation Overview.Recommendation Q.1200. ITU, International TelecommunicationsUnion, Geneva, Switzerland, 1993.[4] ITU Intelligent Network Distributed Functional Plan Architecture.Recommendation Q.1204. ITU, International TelecommunicationsUnion, Geneva, Switzerland, 1994.[5] H. V. Jagadish, A. Silberschatz, and S. Sudarshan Recovering frommain�memory lapses. In Proceedings of the 19th VLDB Conference,pages 391�404, 1993.[6] J. Kiviniemi and K. Raatikainen Object oriented data model fortelecommunications. Report C-1996-75, University of Helsinki, Dept.of Computer Science, Helsinki, Finland, October 1996.[7] H. Kopetz and P. Veríssimo Real time and dependability concepts.In S. Mullender, editor, Distributed Systems, second edition, pages411�446. Addison�Wesley, USA, 1993.[8] T. J. Lehman and M. J. Carey. A recovery algorithm for a high�performance memory�resident database system. In U. Dayal andI. Trager, editors, Proceedings of ACM SIGMOD 1987 Annual Con-ference, pages 104�117. ACM SIGMOD, ACM Press, May 1987.[9] E. Levy and A. Silberschatz Incremental recovery in main memorydatabase systems. IEEE Transactions on Knowledge and Data En-gineering, 4(6):529�540, December 1992.[10] K. Raatikainen and J. Taina Design issues in database systemsfor telecommunication services. Report C-1995-16, University ofHelsinki, Dept. of Computer Science, Helsinki, Finland, September1995.

Rodain Database Architecture 129[11] K. Ramamritham Real�time databases. Distributed and ParallelDatabases, 1:199�226, 1993.[12] J. Taina and K. Raatikainen Experimental real�time object�orienteddatabase architecture for intelligent networks. Engineering IntelligentSystems, 4(3):57�63, September 1996.[13] P. S. Yu, K.-L. Wu, K.-J. Lin, and S. H. Son. On real�timedatabases: Concurrency control and scheduling. Proceedings of theIEEE, 82(1):140�157, January 1994.

