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Abstract

Future telecommunication services will extensively exploit
database technology. The persistent and temporal information
needed in operations and management of the telecommunication
networks and services will be kept in databases. The current Intel-
ligent Network (IN) recommendations of ITU-T imply that real-
time transaction processing capabilities should be provided. They
also imply that the database should be fault tolerant, since the
allowed down—time is only few seconds per failure.

In the research project Rodain the main objective is to de-
sign and specify a fault-tolerant real-time database architecture
for telecommunications applications and to implement a prototype
based on that architecture.

1 Introduction

New telecommunication services are less and less based on concrete hard-
ware components. They are more based on the existing hardware behaving
in a different way. For this change in the service creation a new model
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is needed: the intelligent network concept [3]. It is a telecommunication
network concept, that does not require large modifications to the existing
hardware or software components when new services are created.

The knowledge in the intelligent network is mainly collected in the
Service Data Function [4]. The actual switching networks accesses the
Service Data Function (SDF) through Service Control Function every time
it needs the new IN functionalities. A Service Data Function is actually
a database system.

The Intelligent Network requirements say that the SDF should be
able to process thousands of queries within one second. Although this
requirement seems quite huge, it is still reasonable as we may have one
database serving a number of telephone switches. Each switch can have
hundreds, even tens of thousands, actual telephone lines connected to it.
The temporal load can in fact climb very high.

The SDF must not only answer a huge number of queries, but it must
answer them fast. A typical telephone user does not want to wait for a
long time for the dial tone or for the actual call connection. He or she
is used to it happening within few seconds, and the new services are not
expected to take much longer than that.

The current telephone system is quite reliable, or at least it is a goal
to achieve. The whole switching system is supposed not to be down more
than few seconds per year. It is desirable that the new services of the
intelligent network concept are available when ever the basic telecommu-
nication network is. Therefore also the database system is allowed to be
down only few seconds at a time.

The Rodain Database Architecture is designed to fulfill the require-
ments mentioned above. The Database architecture needs real-time fea-
tures for timely answers. Main—memory database is the only possibility
for timely critical data because some access requirements are so tight that
the access from disk is not possible. Fault tolerance is the base for high
availability.

In this paper we first present overview to our database architecture
in Section 2. Services of the database system are presented in Section
3. Section 4 presents processes used in the functional nodes of Rodain
Database. The fault tolerance features of the Rodain Database prototype
are discussed in Section 5.
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2 Overview of the Rodain Database Archi-
tecture

The Rodain DBMS architecture is a real-time object—oriented database
management system architecture. It consists of a set of autonomous Ro-
dain Database Nodes (Figure 1) that interact with each other. Each
Database Node may communicate with one or more applications, and
each application may communicate with one or more database nodes.
Applications and database nodes may be geographically distributed.

To increase the database availability the Rodain Database Node con-
sists of two identical co—operative nodes. One of the nodes is acting as
the Database Primary Node and the other one is mirroring the Primary
Node. When necessary the Primary and the Mirror Node can switch their
roles. That is done when a failure occurs. When only one node is func-
tional we call it a Transient Node. It acts as the Primary Node, but is
not accompanied by a functional Mirror Node.

The whole Rodain Database is divided in two parts. Each data item
may belong to one of the two heat groups: hot or cold data [10]. They
are stored in different databases within the Rodain Database Node. Hot
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Node
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Database Node m
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Figure 1. Overview of the Rodain Database Architecture
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data is stored in a main memory database. All updates are done in main
memory and a transaction log is maintained to keep the database in a
consistent state. A secondary copy of hot data is located in the Mirror
Node. Only a backup copy is maintained on the disk. Cold data is
stored in a disk based database. Thus we use a hybrid data management
method that is a combination of a main memory database and a disk
based database.

Although the Rodain Database Nodes can co—operate and therefore
support some forms of distribution, the database architecture is not a
distributed database architecture. The Rodain Database architecture is
based on the assumption that most of the transactions need to access local
data on one autonomous node. We also assume that there is no replication
between Rodain Database Nodes. The data has only one primary copy,
but there can be several cached copies of it.

FEach Rodain Database Node consists of Database Primary Node,
Database Mirror Node and a reliable Secondary Storage Subsystem (Fig-
ure 2). The Primary and Mirror Node are identical and they can be
switched. Both nodes have a set of subsystems that communicate with
each other. The subsystems are: User Request Interpreter Subsystem
(URIS), Distributed Database Subsystem (DDS), Fault—Tolerance and
Recovery Subsystem (FTRS), Watchdog Subsystem (WS), and Object—
Oriented Database Management Subsystem (OO-DBMS).

The Secondary Storage Subsystem (SSS) is a shared disk storage ac-
cessed by both the Primary and the Mirror Node. It is used for perma-
nently storing cold data database, copies of hot data database, and log
information.

User Request Interpreter Subsystem. The Rodain Database Node
can have multiple application interfaces. Each interface is handled by
one specific User Request Interpreter Subsystem. It translates its own
interface language into a common connection language that the database
management subsystem understands. The URISes on the Primary Node
are active, because the clients communicate only with the Primary Node.
On the Mirror Node the URISes are passive or do not exist.

Distributed Database Subsystem. A Rodain Database Node may
either be used as a stand—alone system or in co—operation with the other
autonomous Rodain Database Nodes. The database co—operation man-
agement in the Database Primary Node is left to the Distributed Database
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Figure 2. Rodain Database Node

Subsystem. The Distributed Database Subsystem on Mirror Node is pas-
sive or non—existent. It is activated when the Mirror Node becomes a new
Primary or Transient Node.

Fault—Tolerance and Recovery Subsystem. This subsystem con-
trols communication between the Database Primary Node and the
Database Mirror Node. It also co—operates with the Watchdog Subsystem

to support fault tolerance.

The FTRS on the Primary Node handles transaction logs and failure
information. It sends transaction logs to the Mirror Node. It also must
notice when the Mirror Node stops functioning normally and report this
to the Watchdog Subsystem for switching the node to the Transient Node.
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On the Transient Node FTRS stores the logs directly to the disk on SSS.

The FTRS on the Mirror Node receives the logs sent by the Primary
Node’s FTRS. It then saves the logs to disk on SSS and gives needed
update instruction’s to the Mirror Node’s Database Management Subsys-
tem. When it notices that the Primary Node has failed, it informs the
local Watchdog Subsystem.

Watchdog Subsystem. The Watchdog subsystem watches over the
other local running subsystems both on the Primary and on the Mirror
Node. Upon a failure it recovers the node.

On Primary Node when the local FTRS reports the failure of Mirror
Node, the WS controls the node change to the Transient Node. This
change affects mostly the FTRS, that must start storing the logs to the
disk. On Mirror Node the failure of Primary Node generates more work.
The WS must activate passive subsystems such as URIS and DDS. The
FTRS must change its functionality from receiving logs to saving them to
the disk on SSS.

Object—Oriented Database Management Subsystem. This is the
main subsystem both on Primary Node and on Mirror Node. It maintains
both hot and cold databases. It maintains real-time constraints of trans-
actions, database integrity, and concurrency control. It consists of a set
of database processes, that use database services to resolve requests from
other subsystems, and a set of manager services that implement database
functionality. The Object—Oriented Database Management Subsystem
needs the Distributed Database Subsystem, when it can not solve an ob-
ject request on the local database.

3 Database Manager Services and Service
Layers

The Database Management Subsystem is divided into five layers (see Fig-
ure 3). A more detailed version is presented in [12]. The layers are Trans-
action FExecution Layer, that is the visible layer to application, Database
Interface Layer that is the visible layer to common database processes,
Object Layer that handles the physical storage structures of objects, Global
Entity Layer that is the visible interface layer to distribution and repli-
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cation processing in the OO-DBMS, and Real-time Core Layer that im-
plements low level database functionality such as real-time and physical
data control.

Transaction Execution Layer provides the interface between appli-
cation and database services. Every incoming request is handled as a
transaction. Transactions are units of atomicity thus modifications done
by a transaction are either committed or aborted as a whole. Transactions
are scheduled according to their type and deadline. The goal of real-time
transaction scheduling is to maximize the number of transactions, that
will successfully finish before their deadlines [11].

Runtime Transaction Controlling Service accepts new transaction re-
quests and redirects them to Transaction Processing Service. Runtime
Transaction Controlling Service also performs transaction scheduling and
overload management. Transaction Processing Service provides for trans-
actions upper level services such as transaction committing and aborting.
It also communicates with lower layers and passes results to the calling
application. Schema Manager Service provides maintenance and manage-
ment functions for type metadata.

Database Interface Layer is the interface between transactions and
database services. It also offers higher level access to the database as, for
example, attribute and relationship referencing, index handling, querying
by values of an attribute, and query optimization. A full list can be found
in [6]. The complete knowledge of the object model is visible up to this
layer. Requests to lower layers are done with the OID of the accessed
object.

Objects are accessed with an Object Manager Service, which pro-
vides functions for object fetching and storing, accessing object attributes,
methods, relationships etc. Accessing of object instances can be done ei-
ther in a sequential manner or with indexes assigned to attributes. Indez
manager service offers services for index creation, management, and query
optimization by index values.

Object layer offers the Physical Object Manager Service, and the Con-
currency Controller Service. These services are the core manager service
for objects. On this layer the objects are all alike and the actual object
model is no longer visible. Object accessing is always done with an OID
of the object.
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Figure 3. Layers of Database Management Subsystem

Physical Object Manager Service offers services for object creation,
object deletion, and object accessing. Physical Object Manager Service
maps OIDs to physical addresses in the stored database. The physical
address depends on whether the object accessed is hot or cold, or resides
in another database.

Physical Object Manager Service uses the Global Entity Layer when
it cannot resolve an object request on the local database. It uses the
Real-Time Core Layer services for object storing, fetching, and recovery.

Concurrency Control Service allows transactions to run in parallel.
Data concurrency control in Rodain Database Node is based on opti-
mistic concurrency control methods as presented in [13]. Concurrency
Control Service also performs validation of local transactions. As a re-
sult of validation the transaction is normally committed, but it can be
aborted.
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Global Entity Layer offers services to all other layers and to special
controller processes in order to support distribution and replication in the
OO-DBMS. It consists of Distribution Manager Service and Replication
Manager Service.

The Distribution Manager Service is a bidirectional service. When
another service in the local database wants to access remote database,
requests are handled by the Distribution Manager Service. The service
redirects the request to the other database, which has also the Distribution
Manager Service as a counterpart. The Replication Manager Service is
used to send transaction logs to Mirror Node.

Real-time Core Layer implements the core operations of Database
Management Subsystem. This lowest layer consists of Physical Data Man-
ager Service, Recovery Manager Service, Communication Manager Ser-
vice, and Support Services. The Communication Manager Service and
Support Services are used by all other layers.

The Physical Data Manager Service is the only way to access the
physical data stored in the database. It offers services for data storage,
retrieval, and access estimates. Requests for this service are done with an
object’s address and length. The request may also contain the importance
of the requesting transaction.

The Recovery Manager Service is the first service to gain control on
Recovering Mirror Node when the Watchdog Subsystem has started OO—
DBMS recovery operations. It returns database into a consistent state
and restarts the database processes.

The Communication Manager Service offers services to the other man-
agers to maintain communication channels to the other subsystems.

4 Processes in the Database Management
Subsystem

In the RODAIN Database Node only Primary Node servers application
requests. Therefore, all transactions are executed on the Primary Node.
The Mirror Node does not accept connections from the applications. It
starts transaction processing and accepts application’s requests when it
becomes a Transient Node (and later on the Primary Node). The active
transactions are lost when the Primary Node fails. They are not migrated
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to the new Transient Node. The

applications notice the failure of Primary

Node when they receive no response within given time frame.

The processes in the Primary Node are presented in Figure 4. The
formalism in the figure is based on the DARTS software design method
for real-time system [2] with some additions. Transient Node needs all
Primary Node processes and operations with some extra operations, such
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as hot data flushing and log writing directly to the disk. These Transient
Node specific operations are marked with dashed lines. The Mirror Node
uses a subset of the operations needed in the Transient Node.

Runtime Transaction Controller accepts new transaction requests
from URIS, that is connected to the applications. Runtime Transaction
Controller creates a new Transaction Process for each incoming transac-
tion and assigns appropriate properties to it. These properties include
a deadline and a transaction type. The Runtime Transaction Controller
can deny an incoming transaction request in overload situation. Runtime
Transaction Controller also handles transaction scheduling by adjusting
the priorities of each transaction based on selected scheduling policy. The
priorities are then used by the operating system for process scheduling,.

Transaction Process is started to handle requests coming from an
application. These requests can be either a single request that invokes a
prespecified transaction method or a queue of object method calls. Trans-
actions are transient processes which are created at the point of transac-
tion start and killed when transaction terminates. When a transaction
is restarted due to concurrency control, the process instance is not re—
created. Instead the process executes the same transaction again.

OID Request Dispatchers offer services for object reading and writ-
ing, transaction validating and committing. Note that OID Request Dis-
patchers validate and commit only local transactions, thus the responsi-
bility of distributed committing is left to the transaction processes.

The OID Request Dispatchers have one common request queue. They
serve the arriving requests in the priority order. The ORDs are identical
and each one can serve any arriving request. The object access is based
on the object’s OID only. For example, when a Transaction Process asks
for an object to be read, it sends the object OID accompanied with the
read command to the request queue. One of the ORDs gets the request
from the queue and executes it. The result message containing full or
partial object is sent to the requesting Transaction Process via a buffered
communication channel.

A data accessing method depends on where the object is physically
stored. When an accessed data is in the hot database, the OID Request
Dispatcher computes direct physical address to the hot data database and
performs the requested operation. When accessing cold data in the cold
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database, it first tries to access data in cold data buffer and if it is not
there, the request is forwarded to Cold Data Buffer Manager. In the case
of remote object, the request is forwarded to Distributed OID Request
Dispatcher. All objects not found in the local databases are considered to
be remote.

Committing Transaction is only a more prioritized phase in the
Transaction process execution. The Transaction Process is currently com-
mitting the transaction it is executing. The priority of Committing Trans-
action is higher than the priority of any other Transaction Process still
in transaction execution phase. If the transaction does not conflict with
other transactions, the Transaction Process writes modified data to the
database and the transaction is then finally committed. Transaction com-
mit is done, when all data modifications and index modifications are suc-
cessfully stored into safe storage via the Log Writer process.

Index Updater takes care of attribute index updating during the trans-
action commit phase. Indexes are updated after the committing transac-
tion is successfully validated.

Cold Data Buffer Manager receives cold data read and write requests
from the OID Request Dispatchers. Requests are based on physical ad-
dress of the accessed data. Read requests are first resolved from the buffer
pool. When specified data item does not exist in the buffer pool, the item
is fetched from the disk. Write request cause written data items to be
pinned into memory. In the case of transaction commit, the modified
data items are written into disk and unpinned before the commit is ac-
cepted. Thus, the disk database never contains any uncommitted data
and always contains all committed data.

Distributed OID Request Dispatcher is a special database process
that maintains the connection to the Distributed Database Subsystem. It
receives OID read requests from local OID Request Dispatcher and for-
wards these requests to remote database via Distributed Database Sub-
system. It also accepts incoming remote OID read requests and satisfies
these requests with a co—operation of local OID Request Dispatcher.

Log Writer handles log write commands. When the Primary Node
is acting normally, the requests are passed to the Mirror Node. When
the Primary Node is acting as the Transient Node, log write requests are
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written directly to disk. In both cases, the write process is synchronous,
thus a log write operation is finished only when it is guaranteed, that
entry to be written is permanently stored either on the Mirror Node or
on the disk.

Hot Data Flusher writes hot data contents into disk storage, thus cre-
ating a disk copy of the main memory database. This process is normally
used only in the Mirror Node, but it can be used also in the Transient
Node.

5 Fault Tolerance Features in Rodain
Database

The term fault tolerance has been defined in numerous ways, see for ex-
ample [1] and [7]. Basically every definition carry the idea of maintaining
the system’s functionality inspite of some failures. This can be achieved
by restoring the system to some previous point or by adding redundancy
to the system. The three different types of redundancy (physical resource,
time and information redundancy) all provide a different way of adding
redundancy to the system.

Replication of physical resources is the most common way of adding
redundancy. It is also the base of fault tolerance in the Rodain Database.
We use only two similar nodes. The architecture does not hinder usage of
multiple mirror nodes if required.

Time redundancy mechanism is not used in the Rodain Database. It
is not very feasible solution for a real-time system where the amount
of time needed for execution is important. The re—execution needs extra
time, which can more easily lead to missing the deadline specially in failure
situation. This can be avoided by adding extra capacity that is used only
in failure situation. Since the failures are quite rare it is not very cost
effective.

Information redundancy is also not used in the current Rodain
Database prototype. Instead we simply assume that the information does
not change due failures such as memory corruption or erroneous database
update. If this assumption does not hold, then the Rodain Database needs
some mechanism to maintain the information consistency.
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5.1 Failure semantics of the server

The fault—tolerance of any system is based on the knowledge or assump-
tion of the failure behaviors of the services or servers it uses. Cristian
[1] calls this behavior the server’s failure semantics. The servers form
abstraction hierarchies, where each server masks, or tries to mask, the
failures of servers it uses.

Our current implementation of the Rodain Database prototype as-
sumes that the computing hardware has crash failures only. This means
that we assume the hardware to perform correctly until it simply stops
functioning. We do not allow omission or performance failures on the
communication channel either. Instead we require that the communica-
tion channel also has only crash failure semantics. This can be achieved,
since our prototype has multiple networks between the nodes.

We have lowered the probability of total system crash by using two
separate, identical nodes. Only if both nodes fail at the same time the
whole database system will stop functioning from the clients point of view.
For the client application the whole Rodain Database Node may seem to
have omission failures. They can occur when the Primary Node fails and
active transactions are lost. The client application gets no reply and can
safely assume that it never will receive any reply.

Even the failure of disk subsystem can be masked if both Primary and
Mirror Node remain functional until the database copy on disk has been
rebuild. Because this is expensive, takes a long time, and fault tolerant
disk systems such as RAID exists commercially, we have assumed the disk
subsystem used in the Rodain Database Prototype to be failure free.

5.2 Node Replication

The group of replicated server nodes can be organized in different ways.
In the Rodain Database we have chosen to make the Primary and Mirror
Nodes loosely synchronized. The tight synchronization is not cost effective
with the failure assumptions we have made. Generally it would only add
extra overhead without gaining much. The only advantage would be that
the Mirror Node could continue execution of active transactions. Because
the telecommunication area does not need ultra reliable real-time systems,
we can use the computing power to productive work and allow the client
application to see more failures.
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In the Rodain Database Prototype the Primary Node executes all the
operations. Mirror Node only follows its state changes, but makes the
changes bit later in its own state. This reduces the time needed between
failure of Primary Node and execution start on Mirror Node. By keeping
the state of Mirror Node quite close to the state of the Primary Node
we can meet the requirement of downtime restricted to few seconds per
each failure. Other alternatives are not as appealing. If we keep the Mir-
ror Node totally passive and have to rebuild the database contents on
the Mirror Node from scratch each time Primary Node fails the down-
time would be minutes instead of seconds. A more expensive solution
would be to keep the database in a reliable memory such as Flash or bat-
tery backup memory, that is not lost in most hardware failures. Even if
the nonvolatile memory maintains the database content, the processor is
not available until the computing node has recovered. Also the usage of
large amounts of nonvolatile memory requires a special computer. As the
current telecommunication databases are based on special hardware we
are more interested in seeing how they can be implemented on ordinary
computers.

To maintain the synchronization between Primary and Mirror Nodes
the state changes must be past from Primary to Mirror Node. In the
Rodain Database we use transaction logs to pass information of database
modifications from Primary to Mirror. Logs are the basic mechanism
for databases to keep track of database modifications. Traditionally they
are used to return the database back to a consistent state if something
fails. Therefore in the Rodain Database the Mirror Node is continuously
recovering its database copy based on the arriving logs.

Even though the main reason for passing the logs to the Mirror Node is
to update the database copy on it, the Mirror Node can help the Primary
Node in log handling. The Mirror Node can behave as a separate log
storing processor (see [8] or [9]). It is responsible for storing the logs in
a stable storage on disk. The logs on disk are needed only when either
node has failed and is recovering,.

The log storing mechanism on the Rodain Database differs from the
mechanisms presented in [8] and [9]. They both order the logs on a page
basis because they use a disk based database. Since the critical part of the
Rodain Database is a main memory database we can use transaction based
log ordering presented in [5]. The logs of one transaction are grouped
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together and stored adjacently. This makes the recovery of failed node
easier because it can follow the storage order of the logs when updating
the recovering database.

6 Conclusion

In this paper we have given an overview of our prototype database system
Rodain. It is designed to fulfill the requirements for Service Data Function
and Service Data Point presented in the Intelligent Network concept. It is
a real-time database that provides deadlines and criticality value for each
transaction. It is also an object—oriented database, that allows storage
of data and the methods accessing them. The time critical part of the
database is stored fully in the main memory to keep the data access time
short and to meet the execution deadlines of the real-time transactions.

The Rodain Database is also a fault tolerant service. It contains
two nodes that can behave on either role as Primary or Mirror Node.
The database service assumes that the underlying hardware and software
components are either failure free or have only crash failure semantics.
The fault tolerance functionality of the Rodain Database is based on the
transaction logs. The logs are used to maintain the state of the mirrored
database copy close to the state of the primary database. Also the logs
are used when a failed node is recovering back to operation.
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