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Abstract

An approach to access system modeling by queues with a com-
pound customer population is presented. The proposed queuing
system is assumed to contain an infinite number of heterogeneous
servers. The corresponding stochastic Markovian process is con-
structed, theorems on its properties are proved, and its stationary
distribution is derived. The results are used to model the modem
pool as an access server system. The estimation of parameters is
based on empirical measurements of real modem pool traffic. The
fitness tests allow to conclude that the model does not contradict
measured data.

1 Introduction

The intensive growth of the data communication networks has greatly
increased the importance of the analysis and planning problems related
with the structural elements of these networks. A customer—access server
(ACS) typically consists of communication channels and a device connect-
ing the ACS to a server node of the network. Today the ACS’s are widely
used to provide a mass access to the information resources. The ACS’s
determine to a great extent the quality of service the providers are able
to deliver to remote users.
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Modern ACS’s have some special features which must be taken into
account in the course of their mathematical modeling. One of the features
is the compound structure of the ACS’s traffic. The traffic constitutes
of transfers of separate independent blocks of data, the lengths and/or
transmission times of which may have either random or determined values.
These structural units are transferred trough the ACS channels one by
one.

Another important feature of the ACS’s is heterogeneity. In particular,
there exist a diversity of parameters for the various system components.
In addition, the same ACS can be used to serve various kinds of traffic.
Sometimes separate parts of an ACS are predestined for some special
types of traffic, or remote users may prefer certain channels of it.

Hence, the features important for the analysis of the ACS steady—state
characteristics are the compound structure of the traffic and the heteroge-
neous nature of the ACS parameters. Besides, the ACS’s are multichannel,
and they are able to serve a number of remote calls simultaneously.

The composite structure of the ACS traffic can be treated embedding
the heterogeneity of customers into the process model. The compound
customers consist of a sequence of independent units. Hence, one can
transform the customer behavior to the service behavior and consider the
service process as consisting of a sequence of corresponding consecutive
steps. The problem is to construct and analyze distributions which reflect
this structure of the service process. Furthermore, there are also other
characteristics of the ACS’s, which are important; for example, the distri-
bution of the number of busy channels or the loss probability of remote
calls are of vital interest.

Thus, the analyst has to use mathematical schemes which allow ob-
taining information about the system’s behavior at different levels of de-
tail, and if necessary, make it possible to consider general and detailed
characteristics all together.

There exists a big amount of results on multichannel queues with loss
(for instance, results considering the Erlang scheme and its extensions [1,
2,3, 4, 5]). Some general methods have also been worked out [6, 7, 8], and
these allow to make qualitative and quantitative analysis of a wide class
of queues. However, most of these methods treat the service process as a
continuous—time process, and, due to the natural properties of the ACS
traffic, the considered case requires a discrete approach in the analysis of
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the service process.

In the present paper we propose and investigate a queue which ser-
vice scheme is constructed to satisfy the ACS features described above.
We have constructed a corresponding Markovian discontinuous stochas-
tic process, and we have proved theorems on its properties and on its
steady—state characteristics. We have also considered the applicability of
the results of the analysis in modeling the modem pool of the Federal
Petrozavodsk RUNNet Node (FPRN).

The rest of the paper is organized as follows. The queuing system is
defined in Section 2; this section also contains the proof of the process
regularity. Section 3 contains a description of the balance equations sys-
tem of the stochastic process. Theorems on solutions of the system are
presented in Section 4. In Section 5 the results have been applied in a real
ACS environment, the FPRN modem pool has been used as the experi-
mental basis. Results of this modeling effort are presented. These results
also include a fitness test for the distributions obtained from modeling
and the measured data of the real traffic.

2 Description of the queuing system

The queuing system to be considered consists of several groups of servers.
All servers in a group are of equal capacity. The number of servers in a
group can be either finite or infinite. Let us define the system state vector
N = (ny,...,ns), where s is the total number of groups and n;, (i =
1,...,s) is the number of busy servers in the group i. If, at a time
t, the system is in the state (ni,...,ns) then the probability of a new
arrival into the group 7 by the time ¢ + At is A\j(n1,...,ns)At + o(At).
The probability of two or more arrivals during the period At is of the
order o(At). Let m; be the number of servers in a group of finite size. An
arriving customer chooses randomly the server of the group it will occupy,
there are no priorities associated with the servers inside the groups.

The customers have a compound structure: each customer consists of
a finite number of independent units. The number of units in a customer
is denoted by the random variable &, with the distribution

P{E=k}=¢r k=1,2,.... (1)
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Obviously,
o0
Z o =1
k=1

and ¢9 = 0. Let us assume that the expectation of £ is finite, E{ < oo.
All units of a customer are served without delay one by one, in the order
of arrival.

The single unit service time in the group 7 is denoted by the random
variable n;. Variables n; are distributed exponentially

Bi(x)=1—e™% i=1,...,s. (2)

A customer which arrives in a service group all servers busy is lost.
Obviously, a loss of customer can happen only if the group consists of a
finite number of servers. Let us denote a queuing system specified above
with X*°. Its scheme is presented in Figure 1. The special case of one
service group with processor sharing discipline is investigated in [9].

We consider only the case where the distribution of the vector N
does not depend on the distribution of & ({¢;}52,), so called invariance
property. For the case where the number of servers is finite I. N. Ko-
valenko has formulated a necessary and sufficient condition of the invari-
ance on the values A;(N) [7]. The condition is formulated in the following
way. For any set {ni,...,ns} and for any two sets {i1,...,%in,+...4n. };
{i%, .- yin, 4 4.}, where 0;; = 1if i = j and 0;; = 0 if i # j the equality

ni+t...+ng -1 -1
I 2O b D Gai) =
=1 m=1 m=1
ni+...4+ns -1 -1
= Xt () g D Bair)- (3)
=1 m=1 m=1

must be true.

It is easy to see that the stochastic process generating N(t) =
(n1(t),...,ns(t)) does not posses, in the general case, the Markovian prop-
erty. Let us consider the following vector of a variable dimension

(N@),R(t) = (ni(t),...,ns(t),r1 (t),...,rh (), 75 (E), ..., 5 (8)).
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Figure 1. Queue ™
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The dimension of this vector is the sum of two components: the number
of groups and the total number of busy servers. Its coordinates r%(t) are
the number of units which rest to the customer service completion and
must be served (transmitted) by the busy servers at time ¢.

The enumeration of the busy servers in a group is arbitrary. The state
space @ of the thus constructed random process (t) = {(N(t), R(t))}t>o0
consists of variable dimension vectors and can be presented as follows

Q=NUNxNUNxNxNU..., (4)

where N is the set of natural numbers. The set () is numerable.
Let

p(N(#), R(t)) = p(na(t), ... ,ns(t)ﬂ‘i(t),---,ril(t),---,rf(t),---,ris(t()))

5
be a function whose value is the probability of the system being at a time
t in the state

(ni(t),...,ns(t),ri(t),... ,r}“ (t),...,ri(t),...,r (1))

Generally, there exist discontinuous Markovian processes (in particu-
lar processes with a numerable set of states) which cannot be correctly
described by the direct (second) equations of Kolmogorov [10, 11]. In
cases where the minimal solution of the corresponding back equations is
not purely stochastic, the existence of other, different solutions becomes
possible. This includes the cases where a stochastic process makes an
infinite number of transitions during a finite period of time (a so called
finite accumulation point), or the process can leave the state space (for
instance through reaching the infinity) with a positive probability.

According to [10], a Markovian process with a discrete state space is
regular, if the moments of the transitions do not have a finite accumulation
point with probability 1. Notice that for a regular Markovian process the
solution of back Kolmogorov equations is purely stochastic and, hence,
unique and satisfies the direct equations.

The sufficient condition of regularity for the process 6(t) is formulated
in the following

Theorem 1 Let us assume that the following series diverges

=1
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where

S
IN| = > n;. Then the random process 6(t) is reqular.
i=1

PROOF. Let us define the random process 6'(t). The states of ' (t) are
set by the vector Q(t) the dimension of which is equal to the dimension of
the vector R(t). The first s coordinates of Q(t) are equal to the coordinates
of N(t). The rest of the coordinates are defined as the vector X (¢); the
values of its components correspond to the remaining service times of the
customers.

The random process #’(t) thus constructed in this way is a piecewise
linear Markovian process [7, 12], and the rank of its states can be defined
as

N = 3 mile):

One can show, using criteria based on the testing function methods
[12], that if the condition (6) of the theorem is true the 6'(t) process is
regular. Notice that the first s coordinates of the processes Q(t) and
R(t) are equal for each fixed realization. Moreover, for each realization
the transition moments of the process 6'(t) coincide with the transition
moments of the process 6(¢). In comparison with the process 6'(t) the
process 6(t) has also ‘additional’ transitions; these appear because of the
discrete interpretation of the service process. Let us consider the condi-
tional probability of the following event. The random process 6(t) makes
i transitions during a customer service time ¢ < T' < oo, starting at the
moment of its arrival. Then

P¢=i t<T) _ ¢:iB(T)
B;(T) - B(T)

p(i,T)=PE=1/t<T)= (8)

where B;'.* (t) is the i—fold convolution of exponential distributions with
parameters p; j = 1...s, and B;(t) is the distribution function of the
service time in the group j.
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Now the formula (8) can be directed to the limit under i — oo. In
accordance with our assumptions 0 < p; < oo and, hence

lim B¥*(T)=0 VT < oo. (9)
11— 00
Therefore
lim p(i,T) =0 (10)
1—> 00

is true. Thus, the regularity of the process ¢'(t), which is ensured by
the condition (6) of the theorem, leads to the regularity of the source
process 6(t).

O

3 The balance equation system

Let us consider the limit

p(N, R) = lim p(N(t), R(t)). (11)

—00
To simplify notation we denote the state (N, Ry, ..., Rs) with (N, R),
where N = (nq,...,ns) is a vector the coordinates of which are equal to
the number of busy servers in the groups, R; = (ri,... ,rfll)i =1,...,s
and R = (Ry,...,Rs). Let us also use below the unit vectors e;;, with

the dimensions n;. The j-th coordinate of e;; is equal to 1, and the rest
n; — 1 coordinates are equal to zero.

Other unit vectors e’ have the dimension s. Their i-th coordinate is
equal to 1 and the rest are equal to zero.

Let us now consider possible ways of transitions for the random pro-
cess 6(t). After a new customer arrival the system moves from the
state (N — e, Ry,...,R; — r?eij, ..., Rs) into the state (N, R); this tran-
sition has the intensity A;(N — ei)qﬁ,,;j. If a customer arrives into a
group that has several servers each of which having to serve an equal
number of units, the transitions corresponding to each of the servers
do not differ. The system can also enter the state (N,R) from the
states (N + €', Ry,...,1,R;,...,Rs) and (N,Ry,...,R; + eij,...,Rs).
Denote the number of least equal coordinates of the vector R; as si,
the number of coordinates bigger than the least but less than the rest
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as sh, etc. It is obvious that 0 < sj- < n;, and the total number
of sj- is not bigger than n;. Let us denote with k; the total num-
ber of the groups with equal coordinates r; If k; < ng, let us set
si = 0j = ki,...,n;. Denote with a’ the values of the coordinates
which belong to coordinate group numbered j. Under the taken notation
the intensities of transitions (N, R1,...,R; + €;5,...,Rs) = (N, R) and
(N +e,Ri,...,1,R;,...,R;) = (N, R) can be written as (sj-+1 + D
and (si + 1)u;, correspondingly.

Figure 2 shows the part of the transition diagram in the case where
the queuing system consists of two service groups. The first group has
an infinite number of servers, and the second has two of them. The part
of the transition diagram which is shown in the figure consists of all the
ways through which the system can reach, in one transition, the state

[1 (1) 2 (33)], that is N = (12), R, = (1), Ry = (33).

1(0,2)¢

—(A1(1,2) + p1 + 2p2)

Figure 2. The part of transition diagram (Queue 2°°)

Let us formulate the balance equation system (BES) for the
p(N,Ry,...,Rs). The zero state equation is

—pOZA,»(@) + Y uip(0O+e',1) =0, (12)

i=1
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where the vector (0) corresponds to the idle state, and in the state (O +
e’, 1) one server of the i—th group is serving the last unit of the customer.
For the states of N # Q the balance equations are as follows:

s ks
Zz/\j(N—e’)gi),,;;p(N,Rl,...,ri,...,r;_l,r;H,...,r;i,...,RS)—

i=1 j=1

- Z(N(N) +n;pi)p(N, R) +

el ki
+ZZ(S;+1 +1)ulp(N7R17aRl+€Z]aaR8) +

i=1 j=1

+ Z (Si + l)l‘l‘ip(N+eiaR17"'7laRi7"'aRs) =0. (13)
|U;|>0

The norming condition is considered together with the equations
(12)—(13)

> P(N,Ry,...,R,) =1. (14)
Q

4 The solution of the balance equations and
its analysis.

Let us start with the following theorem.

Theorem 2 If the condition (3) is true then the system of equations
(12)—(13) has a nontrivial solution

A(N i 1 i st
p(N,R) = po m( ) II Fol---Ful, (15)

s il...gi|
pyt sty syleesy ]

o0
where F; = " ¢; and

j=i
ni+...4+ns -1 -1
A(N) = All(z 617im’ 5 Z 6s7im)-
=1 m=1 m=1
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ProorF. We show that the expressions (15) transform the system
(12)—(13) to identity. Denote

1 st sil
D(R;) = WF SRR (16)

After substitution of (15) in the equations (13) we obtain for all states
(N, R) € Q\ O

D(R - r;'.eij)

ZZA %zp( i)w—

i=1 j=1

. s ki  + eij
- Z(M(N) +nipi) p(N) + Z Z’u"(sé“ + 1)p(N)W "

£ 3 el + 0o e 2l o (1)
|U;|>0 '
where
_ AW
pN) = (18)

After collecting the terms the expression (17) can be divided into two
parts:

s ki . . D Rz _ri'eij
A:Z [Z NN = 00N = >% ¥

ki e
+ Zui(s;"ﬂ + 1)P(N)% - niuiP(N)] (19)
and
B =3 [putst + 0o + ey 2N ] o)
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Let us demonstrate that the expressions A and B are identical to zero.
The following equalities are true because of the condition (3)

A(N = e)p(N =€) = pip(N) (21)
and }
N(N)p(N) = pip(N + ). (22)
At the same time
Faj. (8;4-1 + I)D(Rz + eij) = Faj.Jrl S;D(Rl)a (23)
and also »
F, D(R r]e”) = s;D(R;). (24)
Therefore, the expression A can be transformed as follows
: o 9ot P
Z pip(N Z sh———— —niuip(N)| =0 (25)
i=1 j=1 ]

k
The identity (25) is evident, since Z:ls; =n; and F; i1t ¢> i = F
j=
As for the expression B, it was noted above, that if |U;(N)| = 0, then
Ai(N) =0 and hence B = 0.
O
Now consider the question of the existence of a steady—state distribu-
tion of the stochastic process 0(t). Let us define the set V. Its elements
are the vectors N = (nq,...,ns), which correspond to the states of the
queue ©.°, i.e. 0 < n; < my, if the number of servers in group ¢ of queue
3> is finite, and n; € NU O otherwise.

Theorem 3 If the following series diverges
= 1

L(7) - (26)

i=1
and the series ™
E
> p(N 5 F < 00 (27)
Nev !

converges, then the stochastic process 6(t) has a steady—state distribution.
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PROOF. Let us assume that the condition (26) of the theorem is true.
Then, according to Theorem 1 the process 6(t) is regular, and the direct
(second) Kolmogorov system of equations can be applied to the process.
Let us demonstrate, that if the condition (27) is true, then unknown
constant py from (15) can be defined to transform the {p(N, R)}(~n, recq)
into probabilities distribution. Let consider following sums

SV =p0) Y 1@ (28)
ReQ(IN])

where Q(k) is

After having taken into account (15) the expression (28) can be trans-
formed into the following form

8§

sy = Y oW ]] D). (29)

ReQ(IN]) i=1

After collecting the terms of (29), S(N) becomes

S(N)=p(N) | > D(Ri) > JIp@®)|. 30

R1€Q(n1) REQ(|N]|) i=2
Since
> st =m, (31)
i=1
the extracted factor yields
> 1
— s Sny
Z D) = Z 51!...8k1!F“11"'Fa"11 N
R1€Q(n1) S1+...+8kr=n1

- (Z F) - (e (52)

i=1
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using a polynomial formula. The upper indices s;'. and aj- are missing in
last transformation as those are equal to 1. One can apply the described
transformations to S(N) s times, and this yields the totally transformed

expression

(E&)N

S(N) = p(N)nl!...ns!'

(33)

Hence, the series formed by the BES (12)—(13) solution is as follows

Y p(NR)=pll+ Y S(N)]=

(N,R)EQ NeV\O
] €™ | _
=po [1+N§\©p(N)n1!.-.ns!J =1 (34)
The series
(E) M
%p(N)nl!...ns! (35)

converges because of the condition (27). Therefore, based on the norming
condition, the py can be calculated as

IN|
=1+ > (36)
Ry
and
IN|
p(V) = pop (V)2 37)

Thus, the satisfaction of the theorem conditions implies the existence of
a steady—state distribution for the random process 6(t); this distribution
is given in the formulas(15) and (36).

O
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5 The real Access Server modeling

This section is devoted to modeling of the modem pool on the base of
results given above. The pool is Customer—Access server of the FPRN.
The pool traffic measurement data was used for the estimation of the
model parameters. The section also contains the figures of the fitness
test, which was made using the estimation.

5.1 The modem pool of FPRN and its traffic
measurements

The FPRN modem pool is used to serve the remote users’ calls. The pool
consists of a multichannel telephone located at a city telephone exchange.
The telephone is connected by wirelines to the modems located at FPRN.
The modems are linked with a server or a router. Usually there are a
number of messages accumulated at the connection establishment time;
all of them are transmitted during one session, in both directions. The
connections are initiated by remote users. According to many protocols
(including UUCP) several files are transmitted during one session.

The pool traffic measurements were undertaken to estimate the pa-
rameters of the 3°° queue as the model of the FPRN modem pool. First
we present a set of general characteristics of the pool traffic (see Table 1).

One can see that the amount of data transferred from the FPRN is
essentially greater than the amount transferred to the FPRN. The data
exchange is characterized by a relatively small amount of data transferred
per a session. A rather great number of incorrectly broken sessions demon-
strates the low quality of the communication lines used.

The remote call arrival rate is one of the most important characteristic
of the pool workload. It is natural to suppose that the rate changes during
the day. Figure 3 visualizes the daily changes. It presents the average
number of calls arrived in the pool during each day, avearaged over the
period from 17.02.97 to 28.03.97.

This type of characterization is of big interest for modeling. Naturally
the arrival and service rates are the main parameteres for this class of
models. As the steady—state analysis assumes that the model parameters
are constant, a characterization of the arrival rate allows to fix apropriate
time windows for further analysis.
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Table 1. The general characteristics of the modem pool traffic during
17.02.97-28.03.97

Number of calls 37259
Number of transmitted files 139222

Total amount of data 632.2 Mbytes
Amount of data transmitted to the FPRN 91.9 Mbytes
Amount of data transmitted from the FPRN 540.2 Mbytes
Number of incorrectly completed sessions 1542

Total number of zero groups 17461
Average size of a group 4.7 files
Average file length 4.761 Kbytes
Average file processing time 13.5 sec.

Since all calls are served by the same resource of the server, the service
rate is likely to depend on the number of calls processed simultaneously.

80

Remote calls number
70

601
501
40
30
20

T e

T T T
0 2 4 6 8 10 12 14 16 18 20 22 24
Time (ours)

Figure 3. The average calls number came to the the modem pool
in the each of 24 ours.
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An additional analysis of the data has shown that in practice the service
rate in the pool does not change (Figure 4).

Let us treat the whole transmission session as a customer, and each
file transmitted, in any direction, as a unit of customer. The measured
traffic data allows to calculate the relative frequencies characterizing the
random variable £ (see (1)), the number of files (i.e. units) transmitted
during the session (Figure 5 ).

600 T T T T

500
byte/sec

400 - 1

300 —

200 B

100 1

0 1 1 1 1

Number of busy modems

Figure 4. Service rate

According to the UUCP-protocol each message is transmitted by two
files. Therefore groups containing an odd number of files correspond to
incorrectly broken sessions. Another specific feature is that remote users
often establish a connection just to check whether there is any incoming
mail. In the case of mail absence an empty group is formed: it does not
contain any files. Let us call it a zero group. However, the transmission
time of the zero groups is positive, as the FPRN server and the remote
node always execute the start and completion procedures. Let us consider
the procedures as one additional unit. Thus, the total number of units is
equal to the number of files transmitted in the session plus one.
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0.5
0.45
0.4
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Relative frequency

0.3-
0.25-
0.2-
0.15-
0.1-
0.05-

0 \ . ‘ \ | -

| .
0 5 10 15 20
Files number

Figure 5. The relative frequency of units number inside the
customer

5.2 The model of the modem pool and figures of the
fitness test.

Let us now consider the issues of the modem pool model development
and its parameter estimation. The modem pool is interpreted as a X
queue. Let A\;(N) = A, p; = p. According to the results obtained above
the steady—state characteristics of the model are determined by the follow-
ing parameters: A—the Poisson arrival rate of the customer (call) stream,
p—the unit service rate, and {¢;}2,—the distribution of the unit quan-
tity. The estimates of the parameters can be obtained from the traffic
measurement data. The system workload can be defined as

p= iE§ .
L
Using the formulas (37) and (36) one can find out the distribution of the
number of busy modems.
At the same time one can obtain the relative frequencies of the number
of busy modems {p, }",, where m is the number of modems in the pool

Pn = —- (38)
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Here t is the total length of the observation period, and ¢, is the sum
of intervals (inside the observation period) during which n modems were
simultaneously busy. It is obvious, that during the time window, chosen
as the period t, the system’s workload should not change significantly.

During the day one can extract two such windows (see Figure 3). The
first lasts from 9.00 till 10.00, the second lasts from 10.00 till 18.00. On
the base of measured data we have calculated, for each of the two time
windows, the relative frequencies of the number of busy modems. As a
model we have used the distribution calculated by the formula

pu=Fre, (39)

which is special case of (37). We have also used means of relative frequen-
cies (by total period of measurements) to compare the theoretical and
empirical values. The values received by formula (39) and from measure-
ment data (38) are presented in the tables 2 and 3. We have set ¢t = 60
to calculate the relative frequencies for the first time window and ¢ = 480
for the second one. The parameters of the modem pool model were esti-
mated from the sample and have the following values A = 0.018, u = 0.068
E¢ = 4.67, p = 1.245, for the period of 9.00-10.00, and A = 0.0125,
uw=0.067 E¢ = 3.98, p = 0.726 for the period of 10.00-18.00.

Table 2. Comparative data of the number of busy channels for the first
period of 9.00-10.00

number of channels 0 1 2 3 4 5
theoretical values 0.288 | 0.358 | 0.223 | 0.093 | 0.029 | 0.007
measurements 0.292 | 0.351 | 0.226 | 0.094 | 0.028 | 0.007

Table 8. Comparative data of the number of busy channels for the
second period of 10.00-18.00

number of channels 0 1 2 3 4 5
theoretical values 0.483 | 0.352 | 0.128 | 0.031 | 0.006 | 0.0008
measurements 0.480 | 0.358 | 0.127 | 0.032 | 0.007 | 0.0005
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As the tables 2 and 3 show, the obtained values start to differ at
the third digit after the decimal comma. This accuracy is satisfactory
for all practical needs. The Figures 6 and 7 present diagrams of relative
frequencies p,, (solid line) and probabilities p,, (dot line) obtained by the

modeling.

0.5

0.4

0.3

0.2

0.1

Relative frequency ——

Theoretical probability

Number of busy modems

Figure 6. Relative frequencies and theoretical probabilities of the

0.5

number of busy channels. Period of 9.00-10.00.
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Theoretical probability

4
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Number of busy modem

5

Figure 7. Relative frequencies and theoretical probabilities of the

number of busy channels. Period of 10.00-18.00.
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We have calculated the statistics of x? and the Kolmogorov—Smirnov
criterions to test the fitness of the theoretical and empirical distributions.
The obtained values of the statistics are given in Table 4.

Table j. Statistics

criteria | 9.00-10.00 | 10.00-18.00
X2 0.709 7.443
KS 0.0072 0.0040

The test statistics do not reach 5% level of significance. At the level
of significance the critical value of the x2 criterion is 11.07, and the criti-
cal value of the Kolmogorov—Smirnov criterion is 0.032 for the first time
window and 0.011 for the second one. Thus the conclusion is that the
results obtained in the FPRN modem pool modeling do not contradict
with measured data.

Our model allows to present the customer call loss probability (Fig-
ure 8) as a function of three parameters. These are the arrival rate of
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remote calls, the message group size, and the service rate, which depends
on the hardware and software characteristics of the server and of the mo-
dem pool. The obtained dependence allows to plan when to update and
how to update the modem pool to keep its performance at the required
level.

6 Summary

We have constructed and analyzed a queuing model that reflects the key
features of a modern access server. The model is a heterogeneous infinite—
server queue with a compound structure for customer arrivals. To investi-
gate the constructed queue we defined a discontinuous Markovian stochas-
tic process. The sufficient conditions for the process regularity and the
existence of the steady—state distribution are formulated and the corre-
sponding theorems are proved. We have also obtained the steady—state
distribution of the number of busy servers in groups of servers, and the
steady—state joint distribution of customer units to be served and of the
number of busy servers in the server groups. The distributions are given
in explicit analytical product forms.

The results have been tried in a real access—server environment using
the FPRN modem pool as an experimental basis. Results of the modeling
are presented, including a fitness test for the distributions. The depen-
dence of the call loss probability on the arrival rate of remote calls, on
the message group size, and on the service rate has been given. The de-
pendence model allows to plan when to update and how to update the
modem pool to keep its performance at the required level.
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