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Compound customers approach for ACS modeling 89Modern ACS's have some special features which must be taken intoaccount in the course of their mathematical modeling. One of the featuresis the compound structure of the ACS's tra�c. The tra�c constitutesof transfers of separate independent blocks of data, the lengths and/ortransmission times of which may have either random or determined values.These structural units are transferred trough the ACS channels one byone.Another important feature of the ACS's is heterogeneity. In particular,there exist a diversity of parameters for the various system components.In addition, the same ACS can be used to serve various kinds of tra�c.Sometimes separate parts of an ACS are predestined for some specialtypes of tra�c, or remote users may prefer certain channels of it.Hence, the features important for the analysis of the ACS steady�statecharacteristics are the compound structure of the tra�c and the heteroge-neous nature of the ACS parameters. Besides, the ACS's are multichannel,and they are able to serve a number of remote calls simultaneously.The composite structure of the ACS tra�c can be treated embeddingthe heterogeneity of customers into the process model. The compoundcustomers consist of a sequence of independent units. Hence, one cantransform the customer behavior to the service behavior and consider theservice process as consisting of a sequence of corresponding consecutivesteps. The problem is to construct and analyze distributions which re�ectthis structure of the service process. Furthermore, there are also othercharacteristics of the ACS's, which are important; for example, the distri-bution of the number of busy channels or the loss probability of remotecalls are of vital interest.Thus, the analyst has to use mathematical schemes which allow ob-taining information about the system's behavior at di�erent levels of de-tail, and if necessary, make it possible to consider general and detailedcharacteristics all together.There exists a big amount of results on multichannel queues with loss(for instance, results considering the Erlang scheme and its extensions [1,2, 3, 4, 5]). Some general methods have also been worked out [6, 7, 8], andthese allow to make qualitative and quantitative analysis of a wide classof queues. However, most of these methods treat the service process as acontinuous�time process, and, due to the natural properties of the ACStra�c, the considered case requires a discrete approach in the analysis of



90 Olga I. Bogoiavlenskaiathe service process.In the present paper we propose and investigate a queue which ser-vice scheme is constructed to satisfy the ACS features described above.We have constructed a corresponding Markovian discontinuous stochas-tic process, and we have proved theorems on its properties and on itssteady�state characteristics. We have also considered the applicability ofthe results of the analysis in modeling the modem pool of the FederalPetrozavodsk RUNNet Node (FPRN).The rest of the paper is organized as follows. The queuing system isde�ned in Section 2; this section also contains the proof of the processregularity. Section 3 contains a description of the balance equations sys-tem of the stochastic process. Theorems on solutions of the system arepresented in Section 4. In Section 5 the results have been applied in a realACS environment, the FPRN modem pool has been used as the experi-mental basis. Results of this modeling e�ort are presented. These resultsalso include a �tness test for the distributions obtained from modelingand the measured data of the real tra�c.2 Description of the queuing systemThe queuing system to be considered consists of several groups of servers.All servers in a group are of equal capacity. The number of servers in agroup can be either �nite or in�nite. Let us de�ne the system state vectorN = (n1; : : : ; ns), where s is the total number of groups and ni; (i =1; : : : ; s) is the number of busy servers in the group i. If, at a timet, the system is in the state (n1; : : : ; ns) then the probability of a newarrival into the group i by the time t + �t is �i(n1; : : : ; ns)�t + o(�t).The probability of two or more arrivals during the period �t is of theorder o(�t). Let mi be the number of servers in a group of �nite size. Anarriving customer chooses randomly the server of the group it will occupy,there are no priorities associated with the servers inside the groups.The customers have a compound structure: each customer consists ofa �nite number of independent units. The number of units in a customeris denoted by the random variable �, with the distributionPf� = kg = �k k = 1; 2; : : : : (1)



Compound customers approach for ACS modeling 91Obviously, 1Xk=1�k = 1and �0 = 0: Let us assume that the expectation of � is �nite, E� < 1.All units of a customer are served without delay one by one, in the orderof arrival.The single unit service time in the group i is denoted by the randomvariable �i. Variables �i are distributed exponentiallyBi(x) = 1� e��ix i = 1; : : : ; s: (2)A customer which arrives in a service group all servers busy is lost.Obviously, a loss of customer can happen only if the group consists of a�nite number of servers. Let us denote a queuing system speci�ed abovewith �1. Its scheme is presented in Figure 1. The special case of oneservice group with processor sharing discipline is investigated in [9].We consider only the case where the distribution of the vector Ndoes not depend on the distribution of � (f�ig1i=1), so called invarianceproperty. For the case where the number of servers is �nite I. N. Ko-valenko has formulated a necessary and su�cient condition of the invari-ance on the values �i(N) [7]. The condition is formulated in the followingway. For any set fn1; : : : ; nsg and for any two sets fi1; : : : ; in1+:::+nsg;fi01; : : : ; i0n1+:::+nsg, where �ij = 1 if i = j and �ij = 0 if i 6= j the equalityn1+:::+nsYl=1 �il ( l�1Xm=1 �1;im ; : : : ; l�1Xm=1 �s;im) == n1+:::+nsYl=1 �j0l ( l�1Xm=1 �1;i0m ; : : : ; l�1Xm=1 �s;i0m): (3)must be true.It is easy to see that the stochastic process generating N(t) =(n1(t); : : : ; ns(t)) does not posses, in the general case, the Markovian prop-erty. Let us consider the following vector of a variable dimension(N(t); R(t)) = (n1(t); : : : ; ns(t); r11(t); : : : ; r1n1(t); : : : ; rs1(t); : : : ; rsns(t)):
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Compound customers approach for ACS modeling 93The dimension of this vector is the sum of two components: the numberof groups and the total number of busy servers. Its coordinates rij(t) arethe number of units which rest to the customer service completion andmust be served (transmitted) by the busy servers at time t.The enumeration of the busy servers in a group is arbitrary. The statespace Q of the thus constructed random process �(t) = f(N(t); R(t))gt>0consists of variable dimension vectors and can be presented as followsQ = N [ (N � N) [ (N � N � N) [ : : : ; (4)where N is the set of natural numbers. The set Q is numerable.Letp(N(t); R(t)) = p(n1(t); : : : ; ns(t); r11(t); : : : ; r1n1(t); : : : ; rs1(t); : : : ; rsns(t))(5)be a function whose value is the probability of the system being at a timet in the state(n1(t); : : : ; ns(t); r11(t); : : : ; r1n1(t); : : : ; rs1(t); : : : ; rsns(t)):Generally, there exist discontinuous Markovian processes (in particu-lar processes with a numerable set of states) which cannot be correctlydescribed by the direct (second) equations of Kolmogorov [10, 11]. Incases where the minimal solution of the corresponding back equations isnot purely stochastic, the existence of other, di�erent solutions becomespossible. This includes the cases where a stochastic process makes anin�nite number of transitions during a �nite period of time (a so called�nite accumulation point), or the process can leave the state space (forinstance through reaching the in�nity) with a positive probability.According to [10], a Markovian process with a discrete state space isregular, if the moments of the transitions do not have a �nite accumulationpoint with probability 1. Notice that for a regular Markovian process thesolution of back Kolmogorov equations is purely stochastic and, hence,unique and satis�es the direct equations.The su�cient condition of regularity for the process �(t) is formulatedin the followingTheorem 1 Let us assume that the following series diverges1Xi=1 1L(i) =1; (6)



94 Olga I. Bogoiavlenskaiawhere L(i) = maxjN j=i sXj=1 �j(N); (7)jN j = sPi=1ni. Then the random process �(t) is regular.Proof. Let us de�ne the random process �0(t). The states of �0(t) areset by the vector Q(t) the dimension of which is equal to the dimension ofthe vectorR(t). The �rst s coordinates of Q(t) are equal to the coordinatesof N(t). The rest of the coordinates are de�ned as the vector X(t); thevalues of its components correspond to the remaining service times of thecustomers.The random process �0(t) thus constructed in this way is a piecewiselinear Markovian process [7, 12], and the rank of its states can be de�nedas jN(t)j = sXi=1 ni(t):One can show, using criteria based on the testing function methods[12], that if the condition (6) of the theorem is true the �0(t) process isregular. Notice that the �rst s coordinates of the processes Q(t) andR(t) are equal for each �xed realization. Moreover, for each realizationthe transition moments of the process �0(t) coincide with the transitionmoments of the process �(t). In comparison with the process �0(t) theprocess �(t) has also `additional' transitions; these appear because of thediscrete interpretation of the service process. Let us consider the condi-tional probability of the following event. The random process �(t) makesi transitions during a customer service time t < T < 1, starting at themoment of its arrival. Thenp(i; T ) = P (� = i=t � T ) = P (� = i t � T )Bj(T ) = �iBi�j (T )Bj(T ) ; (8)where Bi�j (t) is the i�fold convolution of exponential distributions withparameters �j j = 1 : : : s, and Bj(t) is the distribution function of theservice time in the group j.



Compound customers approach for ACS modeling 95Now the formula (8) can be directed to the limit under i ! 1. Inaccordance with our assumptions 0 < �j <1 and, hencelimi!1Bi�j (T ) = 0 8T <1: (9)Therefore limi!1 p(i; T ) = 0 (10)is true. Thus, the regularity of the process �0(t), which is ensured bythe condition (6) of the theorem, leads to the regularity of the sourceprocess �(t).�3 The balance equation systemLet us consider the limitp(N;R) = limt!1 p(N(t); R(t)): (11)To simplify notation we denote the state (N;R1; : : : ; Rs) with (N;R),where N = (n1; : : : ; ns) is a vector the coordinates of which are equal tothe number of busy servers in the groups, Ri = (ri1; : : : ; rin1) i = 1; : : : ; sand R = (R1; : : : ; Rs). Let us also use below the unit vectors eij , withthe dimensions ni. The j�th coordinate of eij is equal to 1, and the restni � 1 coordinates are equal to zero.Other unit vectors ei have the dimension s. Their i�th coordinate isequal to 1 and the rest are equal to zero.Let us now consider possible ways of transitions for the random pro-cess �(t). After a new customer arrival the system moves from thestate (N � ei; R1; : : : ; Ri � rijeij ; : : : ; Rs) into the state (N;R); this tran-sition has the intensity �i(N � ei)�rij . If a customer arrives into agroup that has several servers each of which having to serve an equalnumber of units, the transitions corresponding to each of the serversdo not di�er. The system can also enter the state (N;R) from thestates (N + ei; R1; : : : ; 1; Ri; : : : ; Rs) and (N;R1; : : : ; Ri + eij ; : : : ; Rs):Denote the number of least equal coordinates of the vector Ri as si1,the number of coordinates bigger than the least but less than the rest



96 Olga I. Bogoiavlenskaiaas si2, etc. It is obvious that 0 < sij � ni, and the total numberof sij is not bigger than ni. Let us denote with ki the total num-ber of the groups with equal coordinates rij . If ki < ni, let us setsij = 0 j = ki; : : : ; ni. Denote with aij the values of the coordinateswhich belong to coordinate group numbered j. Under the taken notationthe intensities of transitions (N;R1; : : : ; Ri + eij ; : : : ; Rs) ! (N;R) and(N + ei; R1; : : : ; 1; Ri; : : : ; Rs) ! (N;R) can be written as (sij+1 + 1)�iand (si1 + 1)�i, correspondingly.Figure 2 shows the part of the transition diagram in the case wherethe queuing system consists of two service groups. The �rst group hasan in�nite number of servers, and the second has two of them. The partof the transition diagram which is shown in the �gure consists of all theways through which the system can reach, in one transition, the state[1 (1) 2 (33)], that is N = (12), R1 = (1); R2 = (33).
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Compound customers approach for ACS modeling 97where the vector (O) corresponds to the idle state, and in the state (O +ei; 1) one server of the i�th group is serving the last unit of the customer.For the states of N 6= O the balance equations are as follows:sXi=1 kiXj=1 �j(N � ei)�rijp(N;R1; : : : ; ri1; : : : ; rij�1; rij+1; : : : ; rini ; : : : ; Rs)�� sXi=1(�i(N) + ni�i)p(N;R) ++ sXi=1 kiXj=1(sij+1 + 1)�ip(N;R1; : : : ; Ri + eij ; : : : ; Rs) ++ XjUij>0(si1 + 1)�ip(N + ei; R1; : : : ; 1; Ri; : : : ; Rs) = 0: (13)The norming condition is considered together with the equations(12)�(13) XQ P (N;R1; : : : ; Rs) = 1: (14)4 The solution of the balance equations andits analysis.Let us start with the following theorem.Theorem 2 If the condition (3) is true then the system of equations(12)�(13) has a nontrivial solutionp(N;R) = p0 �(N)�n11 : : : �nss sYi=1 1si1! � � � sini !F si1a1 � � �F siniani ; (15)where Fi = 1Pj=i �j and�(N) = n1+:::+nsYl=1 �il( l�1Xm=1 �1;im ; : : : ; l�1Xm=1 �s;im):



98 Olga I. BogoiavlenskaiaProof. We show that the expressions (15) transform the system(12)�(13) to identity. DenoteD(Ri) = 1si1! � � � sini !F si1ai1 � � �F siniaini : (16)After substitution of (15) in the equations (13) we obtain for all states(N;R) 2 Q n O :sXi=1 kiXj=1 �i(N � ei)�aij�(N � ei)D(Ri � rijeij)D(Ri) �� sXi=1(�i(N) + ni�i)�(N) + sXi=1 kiXj=1 �i(sij+1 + 1)�(N)D(Ri + eij)D(Ri) ++ sXjUij>0�i(si1 + 1)�(N + ei)D[(1; Ri)]D(Ri) = 0; (17)where �(N) = �(N)�n11 : : : �nss : (18)After collecting the terms the expression (17) can be divided into twoparts: A = sXi=1 24 kiXj=1 �i(N � ei)�aij�(N � ei)D(Ri � rijeij)D(Ri) ++ kiXj=1 �i(sij+1 + 1)�(N)D(Ri + eij)D(Ri) � ni�i�(N)35 (19)and B = sXi=1 ��i(si1 + 1)�(N + ei)D[(1; Ri)]D(Ri) � �i(N)�(N)� : (20)



Compound customers approach for ACS modeling 99Let us demonstrate that the expressions A and B are identical to zero.The following equalities are true because of the condition (3)�i(N � ei)�(N � ei) = �i�(N) (21)and �i(N)�(N) = �i�(N + ei): (22)At the same timeFaij (sij+1 + 1)D(Ri + eij) = Faij+1sijD(Ri); (23)and also FaijD(Ri � rijeij) = sijD(Ri): (24)Therefore, the expression A can be transformed as followssXi=1 24�i�(N) kiXj=1 sij �aij + Faij+1Faij � ni�i�(N)35 � 0 (25)The identity (25) is evident, since kPj=1 sij = ni and Faij+1 + �aij = Faij :As for the expression B, it was noted above, that if jUi(N)j = 0, then�i(N) = 0 and hence B � 0:� Now consider the question of the existence of a steady�state distribu-tion of the stochastic process �(t). Let us de�ne the set V . Its elementsare the vectors N = (n1; : : : ; ns), which correspond to the states of thequeue �1; i.e. 0 � ni � mi, if the number of servers in group i of queue�1 is �nite, and ni 2 N [ O otherwise.Theorem 3 If the following series diverges1Xi=1 1L(i) =1; (26)and the series XN2V �(N) (E�)jN jn1! : : : ns! <1 (27)converges, then the stochastic process �(t) has a steady�state distribution.



100 Olga I. BogoiavlenskaiaProof. Let us assume that the condition (26) of the theorem is true.Then, according to Theorem 1 the process �(t) is regular, and the direct(second) Kolmogorov system of equations can be applied to the process.Let us demonstrate, that if the condition (27) is true, then unknownconstant p0 from (15) can be de�ned to transform the fp(N;R)g(N;R2Q)into probabilities distribution. Let consider following sumsS(N) = p(O) XR2Q(jN j) p(N;R)p0 ; (28)where Q(k) is Q(k) = N � : : :� N| {z }k :After having taken into account (15) the expression (28) can be trans-formed into the following formS(N) = XR2Q(jN j) �(N) sYi=1D(Ri): (29)After collecting the terms of (29), S(N) becomesS(N) = �(N)0@ XR12Q(n1)D(R1)1A0@ XR2Q(jN j) sYi=2D(Ri)1A : (30)Since sXi=1 s1i = n1; (31)the extracted factor yieldsXR12Q(n1)D(R1) = sXs1+:::+sk=n1 1s1! : : : sk1 !F s1a1 : : : F sn1an1 == 1n1!  1Xi=1 Fi! = 1n1! (E�)n1 (32)



Compound customers approach for ACS modeling 101using a polynomial formula. The upper indices sij and aij are missing inlast transformation as those are equal to 1. One can apply the describedtransformations to S(N) s times, and this yields the totally transformedexpression S(N) = �(N) (E�)jN jn1! : : : ns! : (33)Hence, the series formed by the BES (12)�(13) solution is as followsX(N;R)2Q p(N;R) = p0[1 + XN2V nOS(N)] == p0 241 + XN2V nO �(N) (E�)jN jn1! : : : ns!35 = 1: (34)The series XN2V �(N) (E�)jN jn1! : : : ns! (35)converges because of the condition (27). Therefore, based on the normingcondition, the p0 can be calculated asp0 = 241 + XN2V nO �(N) (E�)jN jn1! : : : ns!35�1 (36)and p(N) = p0�(N) (E�)jN jn1! : : : ns! : (37)Thus, the satisfaction of the theorem conditions implies the existence ofa steady�state distribution for the random process �(t); this distributionis given in the formulas(15) and (36).�



102 Olga I. Bogoiavlenskaia5 The real Access Server modelingThis section is devoted to modeling of the modem pool on the base ofresults given above. The pool is Customer�Access server of the FPRN.The pool tra�c measurement data was used for the estimation of themodel parameters. The section also contains the �gures of the �tnesstest, which was made using the estimation.5.1 The modem pool of FPRN and its tra�cmeasurementsThe FPRN modem pool is used to serve the remote users' calls. The poolconsists of a multichannel telephone located at a city telephone exchange.The telephone is connected by wirelines to the modems located at FPRN.The modems are linked with a server or a router. Usually there are anumber of messages accumulated at the connection establishment time;all of them are transmitted during one session, in both directions. Theconnections are initiated by remote users. According to many protocols(including UUCP) several �les are transmitted during one session.The pool tra�c measurements were undertaken to estimate the pa-rameters of the �1 queue as the model of the FPRN modem pool. Firstwe present a set of general characteristics of the pool tra�c (see Table 1).One can see that the amount of data transferred from the FPRN isessentially greater than the amount transferred to the FPRN. The dataexchange is characterized by a relatively small amount of data transferredper a session. A rather great number of incorrectly broken sessions demon-strates the low quality of the communication lines used.The remote call arrival rate is one of the most important characteristicof the pool workload. It is natural to suppose that the rate changes duringthe day. Figure 3 visualizes the daily changes. It presents the averagenumber of calls arrived in the pool during each day, avearaged over theperiod from 17.02.97 to 28.03.97.This type of characterization is of big interest for modeling. Naturallythe arrival and service rates are the main parameteres for this class ofmodels. As the steady�state analysis assumes that the model parametersare constant, a characterization of the arrival rate allows to �x apropriatetime windows for further analysis.



Compound customers approach for ACS modeling 103Table 1. The general characteristics of the modem pool tra�c during17.02.97�28.03.97Number of calls 37259Number of transmitted �les 139222Total amount of data 632.2 MbytesAmount of data transmitted to the FPRN 91.9 MbytesAmount of data transmitted from the FPRN 540.2 MbytesNumber of incorrectly completed sessions 1542Total number of zero groups 17461Average size of a group 4.7 �lesAverage �le length 4.761 KbytesAverage �le processing time 13.5 sec.Since all calls are served by the same resource of the server, the servicerate is likely to depend on the number of calls processed simultaneously.
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104 Olga I. BogoiavlenskaiaAn additional analysis of the data has shown that in practice the servicerate in the pool does not change (Figure 4).Let us treat the whole transmission session as a customer, and each�le transmitted, in any direction, as a unit of customer. The measuredtra�c data allows to calculate the relative frequencies characterizing therandom variable � (see (1)), the number of �les (i.e. units) transmittedduring the session (Figure 5 ).
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Figure 4. Service rateAccording to the UUCP�protocol each message is transmitted by two�les. Therefore groups containing an odd number of �les correspond toincorrectly broken sessions. Another speci�c feature is that remote usersoften establish a connection just to check whether there is any incomingmail. In the case of mail absence an empty group is formed: it does notcontain any �les. Let us call it a zero group. However, the transmissiontime of the zero groups is positive, as the FPRN server and the remotenode always execute the start and completion procedures. Let us considerthe procedures as one additional unit. Thus, the total number of units isequal to the number of �les transmitted in the session plus one.
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Figure 5. The relative frequency of units number inside thecustomer5.2 The model of the modem pool and �gures of the�tness test.Let us now consider the issues of the modem pool model developmentand its parameter estimation. The modem pool is interpreted as a �1queue. Let �i(N) = �, �i = �. According to the results obtained abovethe steady�state characteristics of the model are determined by the follow-ing parameters: ��the Poisson arrival rate of the customer (call) stream,��the unit service rate, and f�ig1i=1�the distribution of the unit quan-tity. The estimates of the parameters can be obtained from the tra�cmeasurement data. The system workload can be de�ned as� = ��E�:Using the formulas (37) and (36) one can �nd out the distribution of thenumber of busy modems.At the same time one can obtain the relative frequencies of the numberof busy modems f~pngmn=0, where m is the number of modems in the pool~pn = tnt : (38)



106 Olga I. BogoiavlenskaiaHere t is the total length of the observation period, and tn is the sumof intervals (inside the observation period) during which n modems weresimultaneously busy. It is obvious, that during the time window, chosenas the period t, the system's workload should not change signi�cantly.During the day one can extract two such windows (see Figure 3). The�rst lasts from 9.00 till 10.00, the second lasts from 10.00 till 18.00. Onthe base of measured data we have calculated, for each of the two timewindows, the relative frequencies of the number of busy modems. As amodel we have used the distribution calculated by the formulapn = �ii! e��; (39)which is special case of (37). We have also used means of relative frequen-cies (by total period of measurements) to compare the theoretical andempirical values. The values received by formula (39) and from measure-ment data (38) are presented in the tables 2 and 3. We have set t = 60to calculate the relative frequencies for the �rst time window and t = 480for the second one. The parameters of the modem pool model were esti-mated from the sample and have the following values � = 0:018, � = 0:068E� = 4:67, � = 1:245, for the period of 9.00�10.00, and � = 0:0125,� = 0:067 E� = 3:98, � = 0:726 for the period of 10.00�18.00.Table 2. Comparative data of the number of busy channels for the �rstperiod of 9.00�10.00number of channels 0 1 2 3 4 5theoretical values 0.288 0.358 0.223 0.093 0.029 0.007measurements 0.292 0.351 0.226 0.094 0.028 0.007Table 3. Comparative data of the number of busy channels for thesecond period of 10.00�18.00number of channels 0 1 2 3 4 5theoretical values 0.483 0.352 0.128 0.031 0.006 0.0008measurements 0.480 0.358 0.127 0.032 0.007 0.0005



Compound customers approach for ACS modeling 107As the tables 2 and 3 show, the obtained values start to di�er atthe third digit after the decimal comma. This accuracy is satisfactoryfor all practical needs. The Figures 6 and 7 present diagrams of relativefrequencies ~pn (solid line) and probabilities pn (dot line) obtained by themodeling.
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Figure 6. Relative frequencies and theoretical probabilities of thenumber of busy channels. Period of 9.00�10.00.
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Figure 7. Relative frequencies and theoretical probabilities of thenumber of busy channels. Period of 10.00�18.00.



108 Olga I. BogoiavlenskaiaWe have calculated the statistics of �2 and the Kolmogorov�Smirnovcriterions to test the �tness of the theoretical and empirical distributions.The obtained values of the statistics are given in Table 4.Table 4. Statisticscriteria 9.00�10.00 10.00�18.00�2 0.709 7.443KS 0.0072 0.0040The test statistics do not reach 5% level of signi�cance. At the levelof signi�cance the critical value of the �2 criterion is 11.07, and the criti-cal value of the Kolmogorov�Smirnov criterion is 0.032 for the �rst timewindow and 0.011 for the second one. Thus the conclusion is that theresults obtained in the FPRN modem pool modeling do not contradictwith measured data.Our model allows to present the customer call loss probability (Fig-ure 8) as a function of three parameters. These are the arrival rate of
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Compound customers approach for ACS modeling 109remote calls, the message group size, and the service rate, which dependson the hardware and software characteristics of the server and of the mo-dem pool. The obtained dependence allows to plan when to update andhow to update the modem pool to keep its performance at the requiredlevel.6 SummaryWe have constructed and analyzed a queuing model that re�ects the keyfeatures of a modern access server. The model is a heterogeneous in�nite�server queue with a compound structure for customer arrivals. To investi-gate the constructed queue we de�ned a discontinuous Markovian stochas-tic process. The su�cient conditions for the process regularity and theexistence of the steady�state distribution are formulated and the corre-sponding theorems are proved. We have also obtained the steady�statedistribution of the number of busy servers in groups of servers, and thesteady�state joint distribution of customer units to be served and of thenumber of busy servers in the server groups. The distributions are givenin explicit analytical product forms.The results have been tried in a real access�server environment usingthe FPRN modem pool as an experimental basis. Results of the modelingare presented, including a �tness test for the distributions. The depen-dence of the call loss probability on the arrival rate of remote calls, onthe message group size, and on the service rate has been given. The de-pendence model allows to plan when to update and how to update themodem pool to keep its performance at the required level.AcknowledgmentsThis project was appreciably contributed during my research visit to theDepartment of Computer Science of the University of Helsinki. I expressmy deep gratitude to the former head of the department prof. M. Tienarifor supporting the visit and to the members of the Performance Analysisgroup with prof. T. Alanko for fruitful consideration of the research andpersonally to T. Alanko for his editorial e�orts.
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