
FDPW'97-98 Volume 1, 1998A Survey on Agent SystemsSupporting JavaOskari KoskimiesDepartment of Computer Science, University of HelsinkiP.O.Box 26 (Teollisuuskatu 23)FIN-00014 UNIVERSITY OF HELSINKI, FinlandE-mail: Oskari.Koskimies@cs.helsinki.fiAbstractThe aim of the MONADS project is to develop an architecture,based on mobile agents, which supports nomadic users. Intelligentagents can adapt to changes in terminal equipment and networkconnection, and collaborate with service agents to provide an op-timal service in changing circumstances. The project will developa prototype based on an existing agent system, which will be ex-tended for mobile environments.In order to choose the system to be used, we evaluated theleading Java-based agent platforms available today. We found thateach system had its strengths, and thus no one system could berecommended as best for all kinds of use. However, Voyager isarguably the best overall system.1 IntroductionInternet o�ers an ever�increasing amount of information services. Peoplebecome increasingly dependent on having access to those services, andneed them even when they do not have network access. By using wirelessThe �nancial support of Nokia, Sonera and the Finnish Development Centre ofTechnology is gratefully acknowledged.c
 Oskari Koskimies, 1998



A Survey on Agent Systems Supporting Java 165networks, people can utilize network information services even when theyare on the move. However, current communication services do not workwell in a mobile environment, because of the di�erent characteristics of�xed and mobile networks. Applications that were designed for �xed,reliable networks often perform poorly in a mobile environment. Thenomadic user is also limited by the capabilities of his terminal, whichare often inferior to desktop machines. For example, a terminal may beunable to store or display large, high�quality video clips.These problems can be solved by using light�weight, mobile�awareprotocols and applications in the mobile environment. In addition, a highdegree of adaptability is needed to cope with changing circumstances,for example when a user switches o� his GSM connection and plugs hiscomputer in the o�ce Ethernet network.Autonomous software agents have been seen as the next big step indistributed systems. A lot of research has already been done in this area.However, the use of agent technology to support nomadic users has notyet received much attention, although it is often mentioned as a potentialapplication area.The aim of the Monads6 project is to develop an architecture, basedon mobile agents, which supports nomadic users. The emphasis is onadaptation. Intelligent agents can adapt to changes in terminal equipmentand network connection, and collaborate with service agents to providean optimal service in changing circumstances.The project will develop a prototype based on an existing agent sys-tem. The existing system will be extended for mobile environments, lever-aging software and experience from the Mowgli7 [1] project. In order tochoose the system to be used, we had to evaluate currently available sys-tems. In this article we present a summary of the results of that evalua-tion, Of each system, key features such as communication facilities, secu-rity and reliability are evaluated. However, one should bear the followingthings in mind when reading the evaluation:1. The �eld is evolving quickly: New systems appear, and existing onesimprove. The evaluation was done during Spring 1998.2. JDK1.1 itself provides CORBA support [29], and in this regard all6http://www.cs.Helsinki.FI/research/monads/7http://www.cs.Helsinki.FI/research/mowgli/



166 Oskari Koskimiessystems except D'Agents (aka AgentTCL) [4, 11, 10, 12] supportCORBA. However, Voyager additionally allows CORBA objects tobe used in the same way as objects remote�enabled by Voyager.3. JDK1.1 also provides RMI support [31], so all systems exceptD'Agents can use Java RMI for communication. However, RMIonly provides for synchronous messaging, and is not very e�cient.Most agent systems also provide other forms of communication.4. The Java Security Manager architecture [5] can be used to imple-ment security in all systems. Most systems have provided for secu-rity in this way. However, this will only provide for access control,not encryption and authentication, which some systems (like Con-cordia [20, 32, 21] and D'Agents) provide additional support for.2 Initial selection criteriaWe have limited ourselves to evaluating agent systems that could, at leastin theory, be used in the Monads project. This leads to the following fourconstraints:1. Linux Platform. The agent system must run on the Linux operat-ing system. All pure Java systems are acceptable. This requirementstems from the fact that Linux is the development platform for theMowgli Data Channel Service [1], which is necessary for this project.2. Java Language. The agent system must be able to run agentswritten in the Java language. Due to its portability, widespread useand support, Java is the most likely contender for a general agentlanguage.3. Evaluation version available. An evaluation version of the sys-tem is crucial for a reliable estimate of the system's characteristics.In addition, if none is available, the software is in all probability toounstable to use.4. Generality. The agent system must be suited to developing allkinds of mobile agents, not just, for example, Web searching agents.



A Survey on Agent Systems Supporting Java 167Limitations on the kinds of agents it is possible to create using theagent system could prove fatal later in the project.The �rst constraint is the most restraining. It e�ectively constrains thechoice of commercial systems to those that are implemented in pure Java.Fortunately, this includes most important systems. Academic systems(most notably D'Agents) are more likely to support Linux even if theyare not written in pure Java.The performance of these systems has not been evaluated, due to timeconstraints. It should, however, be noted that the systems which utilizeJava RMI for communication are bound by its perhaps less than optimalperformance. Also, the Voyager [23, 24] system is undergoing performanceoptimization before the production version is released.3 Candidate systems3.1 AgletsThe Aglets Software Development Kit (ASDK) [15, 17] is developed bythe IBM corporation. The ASDK 1.0 production version has just beenreleased (April 24, 1998). It runs on all platforms which support JDK1.1, and currently consists of about 190 core classes (ca. 700 kB).The name is not just an idle pun on agents and applets; the agletsprogramming paradigm closely resembles that of applets, with signi�cantevents in an aglets life having callback methods (like onCreation andonArrival) in the aglet class.Still following the applet model, aglets access their environmentthrough an AgletContext object�similar to the AppletContext forapplets�which corresponds to an execution context. For example, tocreate a new Aglet in a given context, createAglet is invoked on thecontext.MovementIBM is pushing its Agent Transfer Protocol (ATP) [16] as a standard fortransferring agents between networked computers. ATP is very much likeHTTP 1.0 [3], with the same advantages and disadvantages. The maindi�erence is the methods it supports:



168 Oskari KoskimiesDISPATCH Transport an agent to a remote host.RETRACT Retrieve an agent from a remote host.FETCH Retrieve executable code required to execute an agent.MESSAGE Forward a message to an agent.ATP can easily be wrapped up in a HTTP request, which enablesATP to be used from within a �rewall, using HTTP tunneling and HTTPproxy servers.While class loading is basically on�demand, JAR [27] �les (Java classarchives) will be supported in the future. When aglet class �les are ina JAR �le , the whole JAR �le will be transferred to the target systemwhen the agent moves.3.1.1 CommunicationAgents do not refer to other agents directly. Instead, they use AgletProxyobjects. The AgletProxy interface de�nes methods for accessing the agletit represents, for example, sending it messages. The interface is commonto all Aglets, so an AgletProxy is not the same thing as a CORBA or RMIreference. Its main role is to shield the aglet from unauthorized access.Currently AgletProxies do not keep track of roaming agents, so once anagent moves all referencing AgletProxy objects become invalid.Communication between agents is not based on RMI, but on messages(however, messages are probably implemented using RMI). Messages canbe of three types:1. Synchronous messages cause the sender to block until the resulthas been returned.2. Asynchronous messages return immediately with a placeholderobject that can be periodically queried for the results. An agent canalso wait for the reply to arrive, specifying a time limit for the wait.3. Oneway messages are asynchronous messages that do not returnanything.



A Survey on Agent Systems Supporting Java 169A message is sent to an agent using one of the sendMessage meth-ods of its AgletProxy object. Messages received by an agent are storedin a priority queue (messages can be given priorities), and the agent'shandleMessage method is then called for each message in turn, givingthe message object as a parameter for the method.3.1.2 DocumentationASDK documentation consists of the as yet incomplete Aglets speci�ca-tion, JavaDoc API documentation, ATP speci�cation, and some tutorials.In addition, there is some introductory material created by third parties.While not extensive, the available documentation is su�cient for learningthe basics of the system.3.1.3 SecurityAglets may be trusted or untrusted. An agent that is launched locallyand only uses local code is trusted, all other agents are untrusted. Readand write access to �les, object instantiation and window access can bespeci�ed separately for trusted an untrusted agents.The security measures are implemented using the standard Java Se-curity Manager architecture. There is no encryption, or trust based onsecure agent ID's.3.1.4 ReliabilityThe only available reliability feature is the preliminary snapshot methodin the aglet class, which saves a checkpoint of the aglet's state to secondarystorage, and reactivates the aglet from this checkpoint if it is accidentallykilled.3.1.5 User InterfaceOne of the ASDK's strong points is it easy-to-use user interface. Set-ting up the system is easy, and all example aglets are controlled via GUIwindows. The agent manager interface includes functions for creating,dispatching, retracting, killing and interrogating agents, as well as forsetting security privileges.



170 Oskari Koskimies3.1.6 Standard SupportThe Aglets development team participates in MASIF [8]. Correspond-ingly, IIOP [25] may be supported in the future as a transport proto-col. However, currently MASIF is not supported, and there is no explicitCORBA support.3.1.7 Distinguishing featuresThere is some additional agent collaboration support in the form of a setof templates called Java�based Moderator Templates (JMT) that de�nethe basic collaborative behaviors of mobile agents. JMT allows developersto build a complex plan by simply combining them so that multiple agentscan work together toward a common goal. This is done using moderatoragents, which manage and combine the work of other agents.The JKQML [14] framework from IBM alphaWorks supports KQMLcommunication between aglets.3.1.8 OpennessSource code is provided for the some of the core classes, but not for onescontaining important implementation details. It is probably only meantas additional documentation. The Aglets API does not provide hooks forextending ASDK functionality.3.1.9 EvaluationAglets is fairly reliable medium�range agent system. While it does notprovide all the advanced features of Voyager, or the security and reliabilityof Concordia, it is also a lighter system. Its main advantage is its simplicityand user�friendliness. On the other hand, there is no CORBA support,and providing the necessary extensions to the system can become hardwhen neither source code or extension hooks are available.Advantages:� Nice, easy-to-use graphical user interface� MASIF involvement� Good selection of message types



A Survey on Agent Systems Supporting Java 171� Basic security support� Firewall support via HTTP tunneling for ATP� Familiar applet�like programming model� Collaboration support� Backing of a large corporationDisadvantages:� No CORBA support� No hooks for extending system functionality� Agent references become stale when an agent moves� Reliability is only beginning to get attention3.2 ConcordiaConcordia [20, 32, 21] has been developed by Mitsubishi Electric Infor-mation Technology Center America. Version 1.0 has been available sinceJanuary 19th, 1998. It requires JDK 1.1.3, and contains about 480 coreclasses (ca. 1.9 Mb), which makes it the largest system for the moment.Also, the above �gure does not include the third party classes (about 600classes, taking up ca. 2.4 Mb) that the Concordia package includes.3.2.1 MovementThe Concordia agent programming model is based on itineraries. Anitinerary contains a list of target systems, and for each target systemthere is method that will be invoked once that target system is reached.The itinerary of an agent may be modi�ed by the agent itself, by the agentsystem, or by the user via a graphical user interface.Class loading in Concordia is dynamic, but after a class has beenloaded, it is packaged in a special data structure which travels with theagent. While this keeps things e�cient, it does not help in the case wherethe agent does not need a class before long after it has been dispatched.



172 Oskari Koskimies3.2.2 CommunicationFor agent-to-agent communication, Concordia provides distributed syn-chronous and asynchronous events. The events di�er from Aglet mes-sages in the sense that they cannot return a value; otherwise the twomechanisms have a lot in common. However, Concordia events can bemulticast to a group of agents, and they allow a primitive form of location�transparent communication by using non�mobile event manager objects.3.2.3 DocumentationDocumentation consists of an architecture description and a separate doc-ument about security and reliability. The installation package also hasa developers guide in HTML format, including instructions for gettingstarted. The startup documentation is poor, though, containing errorsand omissions.Generally speaking, the documentation is somewhat below par, butdoes explain the basics of agent programming in the Concordia system.3.2.4 SecuritySecurity is where Concordia shines. Secure communications are imple-mented using SSL [6]. Agent data is encrypted during transfer andstorage, and security permissions for an agent depend on the user wholaunched the agent, in contrast to, for example, Aglets where only locallycreated agents are trusted. However, a user is authenticated by a pass-word that the agent carries, not by a certi�cate with a secure hash ofagent code. This means that user identi�cation does not guarantee thatthe agent contains the same code as when the user launched it.3.2.5 ReliabilityReliability is another of Concordia's strengths. Agent movement is fullytransactional, meaning that agent state is saved to secondary storage im-mediately upon arrival, and the agent transfer does not complete beforethe save is successful.Agents are automatically checkpointed just before departure in thesource system, and just after arrival in the destination system (as outlinedabove). If an agent server crashes, agent state can be restored from the



A Survey on Agent Systems Supporting Java 173most recent checkpoint. The checkpoint just before departure is to savethe results of processing, in case the server crashes while attempting totransfer the agent.The weakness of this automatic checkpointing is that it fails in the casewhere agent operations are not idempotent. This can partly be handledby explicitly requesting the agent to be checkpointed at key points in theprocessing.3.2.6 User InterfaceWhile the graphic user interface is probably the most advanced of thesystems presented here, it is also the most unreliable. However, this maybe because of JDK problems.Problems aside, the GUI has perhaps the best general agent controlmethod. The itinerary can be modi�ed by the user without any program-ming knowledge. All that is required is that the agent programmer hasde�ned a separate method for each type of host. E.g. there can be onemethod for querying data, and another for returning results.The GUI also has a wealth of con�guration options, allowing di�erentservices to be started or stopped, agents installed and launched, securityoptions speci�ed etc.3.2.7 Standard SupportConcordia does not support any agent standards.3.2.8 Distinguishing FeaturesLike the ASDK, Concordia provides a collaboration framework, althoughConcordia's framework is much simpler, at least conceptually. It supportsthe common case where a single master agent waits for multiple slaves toaccomplish their tasks and then processes the results. The structure mayextend to several levels: slaves can themselves be masters for other slaves.3.2.9 OpennessAside from examples, Concordia does not come with any source code. TheService Bridge, which is meant for providing an interface from Concordia



174 Oskari Koskimiesagents to the services available at the various machines in the network,is the only extension API provided. It is only suitable for adding newservices, not for modifying Concordia behaviour.3.2.10 EvaluationConcordia is a large system, with comparatively extensive reliability andsecurity features. However, agent communication is limited, and needsRMI to be complete. Even so, there is no way to invoke a remote methodasynchronously.Concordia documentation is barely adequate, and not much thoughthas been put into the installation procedure: Concordia installation re-quires Korn shell to be installed on your system and was, with the possibleexception of D'Agents which was not yet available, the most di�cult sys-tem to install. The overall impression is that of an un�nished product.Advantages:� Good security and reliability features� Nice user interface� Collaboration support� Distributed events� Flexible generic agent controlDisadvantages:� Un�nished system and documentation� No messaging system (although events are provided). Instead, RMIhas to be used, which means asynchronous (future) messages arenot possible� Messaging is not migration�transparent� Large system size� No extension APIs or source



A Survey on Agent Systems Supporting Java 1753.3 D'Agents (AgentTCL)D'Agents [4, 11, 10, 12] (formerly AgentTCL) is developed by DartmouthCollege. It is in several ways unique with respect to the systems evalu-ated here. Firstly, it is an academic system, with full source available.Secondly, it implements agent movement in a way which allows executionstate to be captured. And last (and least pleasant), there is no publiclyavailable version which supports Java, although there are internal versionsthat do.The last point should by rights have excluded the system from thisevaluation, but a public version with Java is promised �Any Day Real SoonNow�, and the source availability makes D'Agents too good a possibilityto ignore.3.3.1 MovementBy using a modi�ed Java runtime, D'Agents is able to capture agent ex-ecution state. This makes it possible for D'Agents to continue executionimmediately after the move command at the new node. While this pro-gramming model is not intrinsically more powerful than the one used byother systems, and could actually lead to code that is harder to under-stand, it does make agent programming more straightforward.The major disadvantage of using a custom Java runtime is thatthe Java runtime version that D'Agents supports will unavoidably lagbehind�currently it is in version 1.0.2, whereas the most recent versionis 1.1.6. One is also required to license the JDK if one wants to get thesources for the modi�ed runtime.Once an agent has been transferred, it cannot load any classes from itsorigin host. Also, since only Java 1.0.2 is supported, RMI is not available.This means that all non�system classes that the agent might need mustbe transferred with the agent. Serialization does not capture classes whichhave no instances, so it is necessary for the agent to provide a list of classesit needs.It should perhaps be noted that while all other agent system use JavaObject Serialization to move agents, D'Agents uses its own state capturecode, partially borrowed from the Sumatra [2] system. This becomes anissue if agent movement is standardized, because the bytestream createdby Java Object Serialization is in all likelihood incompatible with the



176 Oskari Koskimiesone created by the custom code in D'Agents. On the other hand, theD'Agents agent programming model is unique in any case, because of theexecution state capture, which means that D'Agent agents are unlikely tobe compatible with other systems.3.3.2 CommunicationD'Agents implements synchronous messages and events (they are essen-tially the same thing in D'Agents, as messages do not return anything).Stream communication is also supported. There is no location trans-parency: Messages must be sent to the host where the receiver agentresides.3.3.3 DocumentationSince D'Agents is an academic project, there is a lot of written materialavailable. Unfortunately the most important one, the tutorial, has notbeen updated since version 1.1. The is therefore not known for certainwhat kind of Java API the system will have.3.3.4 SecurityD'Agents uses the Pretty Good Privacy (PGP) [33] software as an externalmodule to accomplish encryption. Data to be encrypted is saved in a�le, encrypted and/or signed using PGP, and the result is then sent toits destination. Both agents and messages can be encrypted to avoidinterception, and digitally signed to reliably identify their owner [7].PGP uses RSA [26] public key cryptography for authentication, andthe IDEA [19] algorithm for encryption. The problem with these securityfeatures is the slowness of the RSA algorithm; using PGP introduces asigni�cant performance penalty. In addition, implementing PGP use asa separate process introduces additional overhead when compared to amore tightly integrated encryption system.Agent can be either anonymous or owned. Like in Concordia, agentpermissions depend on the owner of the agent. Anonymous agents areuntrusted and are allowed minimal access to resources if they are acceptedat all.



A Survey on Agent Systems Supporting Java 1773.3.5 ReliabilityAt the moment, the only reliability�oriented mechanism is a docking sys-tem (see Figure 1, where mobile computers are assigned a docking stationwhere agents can dock to wait for the mobile computer to be connectedto the network. When the mobile computer connects to the network, italerts the docking station, which wakes up all docked agents. However, thedocking system currently only handles migration�it does not help whenan agent tries to send a message to a disconnected mobile computer.

Figure 1. D'Agents docking system



178 Oskari KoskimiesReliability is one of the main de�ciencies in the current version ofD'Agents, and thus also one of the most important directions for furtherdevelopment. A checkpointing practice similar to that in Concordia isplanned, and partially implemented. In addition, the system designers areconsidering methods to guard against unacceptable delays due to servercrashes.3.3.6 User InterfaceWhile graphical user interfaces for agents can easily be constructed usingAgent Tcl and Tk, there is no graphical user interface for server manage-ment. Agents can be tracked by a special debugging tool, which allowsagent movement and communications to be monitored. However, the toolonly supports Tcl and works by instrumenting agent code.3.3.7 Standard SupportCurrently D'Agents does not support any standards, but the people be-hind the system express an interest in supporting MASIF once it becomesaccepted. However, the unique state capture model of D'Agents maypresent problems here.3.3.8 Distinguishing featuresD'Agents supports multiple languages: Tcl, Java and Scheme. In thisregard, the system is unique of those reviewed here. D'Agents is also theonly system reviewed here that has at least partially taken into accountmobile computers which are only intermittently connected to the net-work. This is accomplished through a docking system [9] (see Reliabilityabove).A debugging tool [13] can be used to instrument agent code, whichallows execution, movement and communications to be monitored. How-ever, the tool currently only supports Tcl.A Yellow Pages service [12] allows an agent to identify, locate anduse previously unknown services. A service agent announces a service byposting an interface description of the service.For non�programmers, D'Agents o�ers a simple graphical agent con-struction program [12], which allows Tcl agents to be constructed from



A Survey on Agent Systems Supporting Java 179prede�ned components. The principle is similar to Java Beans [30].An important justi�cation for mobile agents is the performance im-provement they provide by migrating code and using local messaging.However, when bandwidth is abundant and CPU time at the premium, itmay be more e�cient to use remote messaging instead of agent movement.Deciding on the optimal migration strategy is a di�cult issue, and subjectto ongoing research by the D'Agents team [12]. Network monitoring, ma-chine monitoring and a decision�making library are under development.3.3.9 OpennessSince source code is available, D'Agents can be regarded as a fully opensystem. The only caveat is that code for the modi�ed Java runtime re-quires a license from Sun Microsystems.3.3.10 EvaluationD'Agents is �rst and foremost an open, academic system. For example,while it o�ers a very limited feature set (e.g. with respect to messaging),on the other hand it is the only agent system presented here to explicitlysupport mobile computing. This is typical of academic systems, for fullfunctionality is not necessary for academic purposes. Instead, the areacovered by the system is very broad and branching, spiraling into whateverdirections the developers have thought interesting, or a suitable studentproject.It should be noted that while D'Agents is no longer called AgentTCL,it is still a very Tcl�centric system. In particular, features are �rst imple-mented in Tcl, and then moved to Java. This means that Java languagefeatures are not taken advantage of.Advantages:� Full source code available (but license from Sun Microsystems isrequired)� Academic developer makes co�operation easier� Agent movement captures execution state� Language support for multiple languages: Tcl, Java and Scheme



180 Oskari Koskimies� Simple agents are often easier to code in Tcl� Security is on the same level (and partially above) as that of Con-cordia� Docking system takes mobile computing into accountDisadvantages:� Java version is not yet available� Only supports Java 1.0.2: No RMI or Object Serialization� Java is a secondary language in the project� Agent communication is very primitive, only synchronous messagesand stream transfer� Reliability is only beginning to get noticed� No standard support3.4 VoyagerVoyager [23, 24] is developed by Objectspace, the people behind the JavaGeneric Library [22] (Java version of STL), which has been incorporatedinto the Java Foundation Classes [28]. The Voyager system is now in ver-sion 2.0 Beta, which consists of about 280 core classes (ca. 770 kB). It isby far the most professional and feature�rich product evaluated here. It isworth noting that Voyager is the only system that was developed as prod-uct (as compared to a research project) from the beginning. One of themain Voyager features is its striving towards distribution transparency;where possible, distribution has been hidden from the programmer.3.4.1 MovementThe move command takes as parameters the target system and the nameof the method that should be called once the target system has beenreached. Although itineraries like those in Concordia are not explicitlysupported, they are extremely simple to implement. However, there is noGUI for managing itineraries.



A Survey on Agent Systems Supporting Java 181Classes are not fetched on�demand; instead, all agent classes aremoved when the agent moves. Unnecessary class transfer can be avoidedby using interfaces.3.4.2 CommunicationVoyager provided a comprehensive array of messaging alternatives: Syn-chronous, asynchronous, one�way and (software) multicast messages areall catered for. Messaging is both location� and migration�transparent(via a federated directory service and message forwarders), and timeoutscan be speci�ed for asynchronous messages. The hierarchical �Space� mes-saging architecture (see Figure 2) provides for scalable group communica-tion. In addition, �smart messages� [24], which are essentially miniatureagents, can implement things like store-and-forward functionality.Messaging looks like Java invocations to the programmer, but RMI isnot used. The necessary stubs are created automatically and on�demand.Distributed events compatible with the Java Beans Event model are alsoavailable.3.4.3 DocumentationVoyager has by far the best documentation of the agent systems. Theprovided documentation includes a 375�page Userguide, API documen-tation, a Technical Overview with information on how to get started, acomparison of Voyager 1.0 and other agent systems, and some preliminarydocumentation on Voyager's upcoming CORBA and transaction services.3.4.4 SecuritySecurity is one of Voyager's main de�ciencies. It only provides for thestandard applet�like security model implemented by the Java SecurityManager architecture.



182 Oskari Koskimies

Figure 2. The Voyager �Space� messaging architecture



A Survey on Agent Systems Supporting Java 1833.4.5 ReliabilityVoyager provides its own database service, which can be used to make ob-jects persistent. Persistent objects can be automatically loaded to mem-ory during server startup, which allows a kind of recovery mechanism.Reliable agent movement is also supported.3.4.6 User InterfaceVoyager has no graphical user interface. There are also no utilities forcreating and destroying agents, comparable to the management GUIs ofother agent systems; while these are not very useful in serious devel-opment, where such utilities would probably have to be specially builtanyway, it would simplify trying out the system.3.4.7 Standard SupportThe production version of Voyager 2.0 (said to be available in Summer1998) will provide full CORBA support. Uno�cially, Voyager developershave said that �Once MAF becomes a standard it is likely that we willbecome compliant.�3.4.8 Distinguishing featuresThe features that set Voyager apart from the rest are its TransactionService (in development, and not free), CORBA support, superior docu-mentation, and �exible communication system.3.4.9 OpennessNo source code is provided, apart from example programs. However,Voyager does provide a few hooks for extending system functionality. Onesuch hook is the possibility to use your own transport service instead oftraditional sockets. A di�erent service can be used for di�erent destinationhosts. Other hooks are the �smart� messaging system and a possibility toextend the class loading mechanism. Voyager developers have also talkedabout more hooks being available in the production version; whether thisis true or not remains to be seen.



184 Oskari Koskimies3.4.10 EvaluationTwo things characterize Voyager:1. Professional standard. Unlike other systems, Voyager is more aproduct than an experiment. This is not to say that it does notcontain bugs.2. The Voyager philosophy seems to be �by coders, for coders�. There isno attractive GUI, the example agents are simple and unassuming,each highlighting a speci�c feature of the system. But substantiale�ort has been invested into making agent programming as painlessas possible�assuming you are a coder.Advantages:� Professional product.� Superior documentation.� Advanced messaging facilities�only system to support migrationtransparency.� Distributed Java Beans compatible events.� Reliability support.� Extension APIs.� Transaction Service (in development, and not free).� Full CORBA support (production version).Disadvantages:� It is for the moment unsure exactly how extensible the productionversion will be, and if that will be enough for the purposes of theproject. It may be necessary to license the source code, the cost ofwhich is unknown.� Security is nonexistent, and reliability support is not all that exten-sive either.� While not huge, the system is certainly large.� No graphical user interface.



A Survey on Agent Systems Supporting Java 1853.5 Comparison and ConclusionsTable 1. Comparison of agent systemsSystem Advantages DisadvantagesAglets Good Messaging Extension APIsGood GUI ReliabilityMASIF involvementBasic securityKQML supportConcordia Good Security Extension APIsGood reliability Un�nished systemGood GUI Un�nished docsAgent control Only RMI comm.Large systemD'Agents Source code No Java yetMany languages Only Java 1.0.2Good security Primitive comm.Mobility support Primarily TCLAcademic project No reliabilityVoyager Professional product Extensibility?Superior docs No securityAdvanced comm. No GUIReliability support No management utilsFull CORBA support Large systemTransaction serviceAs Table 1 shows, there is no single best system. Each system is goodin some areas, and poor in others. However, Voyager comes very close toachieving supremacy. The suitability of the systems is outlined below:Aglets Aglets is the best introductory system, suitable for those whowant to try out agent programming. It is easy to install, and hasan simple but e�ective GUI for controlling the agents.Concordia The designers of Concordia have paid special attention toreliability and security, and in this area Concordia has the upperhand.



186 Oskari KoskimiesD'Agents D'Agents is an academic system, and thus much more �open�than the other systems. Full source code is freely available, makingthe system uniquely suitable for research work. In addition, thesystem supports several languages, whereas the other systems onlysupport Java.Voyager Voyager is by far the most advanced system of the four, o�eringa vast array of features. It also goes to great lengths to make agentprogramming easy and intuitive. For generic, commercial agent ap-plications it is without doubt the best choice.References[1] T. Alanko, M. Kojo, M. Liljeberg, and K. Raatikainen. Mowgli:Improvements for Internet Applications Using Slow Wireless Links.In Proceedings of the 8th IEEE International Symposium on Per-sonal, Indoor and Mobile Radio Communications, Helsinki, Finland,September 1997.[2] Anurag Acharya, M. Ranganathan, and Joel Saltz. Sumatra: ALanguage for Resource-aware Mobile Programs. In J. Vitek andC. Tschudin, editors, Mobile Object Systems: Towards the Pro-grammable Internet, volume 1222, pages 111�130. Springer-Verlag:Heidelberg, Germany, 1997.[3] T. Berners-Lee, R. T. Fielding, and H. F. Nielsen. Hypertext Trans-fer Protocol � HTTP/1.0. Internet draft, IETF, HTTP WorkingGroup, December 1994. Available at<URL:http://www.ics.uci.edu/pub/ietf/http/draft-�elding-http-spec-01.ps.Z>.[4] Dartmouth College. D'Agents. Available at<URL:http://www.cs.dartmouth.edu/~agent/>.[5] Marlena Erdos, Bret Hartman, and Marianne Mueller. Security Ref-erence Model for the Java Developer's Kit 1.0.2. Technical report,Sun Microsystems, Inc., 1996.



A Survey on Agent Systems Supporting Java 187[6] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Pro-tocol Version 3.0, 1996. Available at<URL:http://www.netscape.com/eng/ssl3/draft302.txt>.[7] Gray R. S., Cybenko G., Kotz D., and Rus D. D'Agents: Security ina multiple-language, mobile-agent system. In Giovanni Vigna, editor,Mobile Agent Security, Lecture Notes in Computer Science. Springer-Verlag, 1998. To appear.[8] GMD FOKUS and IBM Corporation. Mobile Agent System Interop-erability Facilities Speci�cation, November 1997. Standard proposal.[9] Gray R. S., Kotz D., Nog S., Rus D., and Cybenko G. Mobile Agentsfor Mobile Computing. Technical Report PCS-TR96-285, DartmouthCollege, Computer Science, Hanover, NH, May 1996.[10] Gray R., Kotz D., Nog S., Rus D., and Cybenko G. Mobile agents:The next generation in distributed computing. In Second Aizu Inter-national Symposium on Parallel Algorithms/Architectures Synthesis(pAs '97), pages 8�24, Fukushima, Japan, March 1997. IEEE Com-puter Society Press.[11] Gray R. S. Agent Tcl: A Transportable Agent System. In Proceedingsof the CIKM Workshop on Intelligent Information Agents, Fourth In-ternational Conference on Information and Knowledge Management(CIKM 95), Baltimore, Maryland, 1995.[12] Gray R. S. Agent Tcl: A �exible and secure mobile-agent system.Technical Report PCS-TR98-327, Dartmouth College, Computer Sci-ence, Hanover, NH, January 1998.[13] Hirschl M. and Kotz D. AGDB: A Debugger for Agent Tcl. Techni-cal Report PCS-TR97-306, Dartmouth College, Computer Science,Hanover, NH, February 1997.[14] IBM alphaWorks. JKQML. Available at<URL:http://www.alphaWorks.ibm.com/formula/jkqml>.[15] IBM Corporation. Aglets Software Development Kit. Available at<URL:http://www.trl.ibm.co.jp/aglets/>.



188 Oskari Koskimies[16] Danny B. L. and Yariv A. Agent Transfer Protocol � ATP/0.1 . IBMTokyo Research Laboratory, March 1997.[17] Danny B. L. and Daniel T. Programming Mobile Agents in Java �A White Paper. Technical report, IBM Corp., 1996.[18] Liljeberg M., Helin H., Kojo M., and Raatikainen K. Enhanced Ser-vice for World-Wide Web in Mobile WAN Environment. TechnicalReport C-1996-28, Department of Computer Science, University ofHelsinki, 1996. Revised version published in Proceedings of the IEEEGlobal Internet 1996 Conference, London, England, November 20-21,1996.[19] Lai X., Massey J. L., and Murphy S. Markov ciphers and di�erentialcryptanalysis. In Donald W. Davies, editor, Proceedings of Advancesin Cryptology (EUROCRYPT '91), volume 547 of Lecture Notes inComputer Science, pages 17�38. Springer-Verlag: Heidelberg, Ger-many, 1991.[20] Mitsubishi Electric Information Technology Center America. Con-cordia. Available at<URL:http://www.meitca.com/HSL/Projects/Concordia/>.[21] Mitsubishi Electric Information Technology Center America. Mobileagent computing. A White Paper, January 1998.[22] ObjectSpace, Inc. ObjectSpace JGL � The Generic Collection Li-brary for Java. Version 3.0. Available at<URL:http://www.objectspace.com/jgl/>.[23] ObjectSpace, Inc. ObjectSpace Voyager. Available at<URL:http://www.objectspace.com/voyager/>.[24] ObjectSpace, Inc. ObjectSpace Voyager Core Package TechicalOverview, December 1997. Version 1.0. Available at<URL:http://www.objectspace.com/voyager/whitepapers/VoyagerTechOview.pdf>.[25] Object Management Group. The Common Object Request Broker:Architecture and Speci�cation, February 1998. Version 2.2. Availableat <URL:http://www.omg.org/corba/c2indx.htm>.



A Survey on Agent Systems Supporting Java 189[26] RSA Laboratories. RSA Encryption Standard, 1993. Available at<URL:http://www.rsa.com/rsalabs/pubs/PKCS/ps/pkcs-1.ps.gz>.[27] Sun Microsystems. JAR � Java Archive. Available at<URL:http://java.sun.com/products/jdk/1.1/docs/guide/jar/>.[28] Sun Microsystems. Java Foundation Classes. Available at<URL:http://java.sun.com/products/jfc/>.[29] Sun Microsystems. Java IDL. Available at<URL:http://java.sun.com/products/jdk/1.2/docs/guide/idl/>.[30] Sun Microsystems. Java Beans(TM), July 1997. Graham Hamilton(ed.). Version 1.0.1.[31] Sun Microsystems. Java Remote Method Invocation � DistributedComputing for Java. White Paper, March 1998.[32] Wong D. et al. Concordia: An Infrastructure for Collaborating Mo-bile Agents. In K. Rothermel and R. Popescu-Zeletin, editors, Proc.First Int. Workshop on Mobile Agents, volume 1219 of Lecture Notesin Computer Science, pages 86�97, Berlin, 1997. Springer-Verlag,Berlin.[33] Zimmermann P. Pretty Good Privacy. Available at<URL:http://www.pgpi.com/>.


