FDPW’97-98 Volume 1, 1998

A Survey on Agent Systems
Supporting Java

Oskari Koskimies
Department of Computer Science, University of Helsinki

P.O.Box 26 (Teollisuuskatu 23)
FIN-00014 UNIVERSITY OF HELSINKI, Finland

E-mail: Oskari.Koskimies@cs.helsinki.fi

Abstract

The aim of the MONADS project is to develop an architecture,
based on mobile agents, which supports nomadic users. Intelligent
agents can adapt to changes in terminal equipment and network
connection, and collaborate with service agents to provide an op-
timal service in changing circumstances. The project will develop
a prototype based on an existing agent system, which will be ex-
tended for mobile environments.

In order to choose the system to be used, we evaluated the
leading Java-based agent platforms available today. We found that
each system had its strengths, and thus no one system could be
recommended as best for all kinds of use. However, Voyager is
arguably the best overall system.

1 Introduction

Internet offers an ever—increasing amount of information services. People
become increasingly dependent on having access to those services, and
need them even when they do not have network access. By using wireless

The financial support of Nokia, Sonera and the Finnish Development Centre of
Technology is gratefully acknowledged.

© Oskari Koskimies, 1998

A Survey on Agent Systems Supporting Java 165

networks, people can utilize network information services even when they
are on the move. However, current communication services do not work
well in a mobile environment, because of the different characteristics of
fixed and mobile networks. Applications that were designed for fixed,
reliable networks often perform poorly in a mobile environment. The
nomadic user is also limited by the capabilities of his terminal, which
are often inferior to desktop machines. For example, a terminal may be
unable to store or display large, high—quality video clips.

These problems can be solved by using light—weight, mobile—aware
protocols and applications in the mobile environment. In addition, a high
degree of adaptability is needed to cope with changing circumstances,
for example when a user switches off his GSM connection and plugs his
computer in the office Ethernet network.

Autonomous software agents have been seen as the next big step in
distributed systems. A lot of research has already been done in this area.
However, the use of agent technology to support nomadic users has not
yet received much attention, although it is often mentioned as a potential
application area.

The aim of the Monads® project is to develop an architecture, based
on mobile agents, which supports nomadic users. The emphasis is on
adaptation. Intelligent agents can adapt to changes in terminal equipment
and network connection, and collaborate with service agents to provide
an optimal service in changing circumstances.

The project will develop a prototype based on an existing agent sys-
tem. The existing system will be extended for mobile environments, lever-
aging software and experience from the Mowgli” [1] project. In order to
choose the system to be used, we had to evaluate currently available sys-
tems. In this article we present a summary of the results of that evalua-
tion, Of each system, key features such as communication facilities, secu-
rity and reliability are evaluated. However, one should bear the following
things in mind when reading the evaluation:

1. The field is evolving quickly: New systems appear, and existing ones
improve. The evaluation was done during Spring 1998.

2. JDK1.1 itself provides CORBA support [29], and in this regard all

Shttp://www.cs.Helsinki.FI/research/monads/
“http://www.cs.Helsinki.FI/research/mowgli/

166

Oskari Koskimies

2

systems except D’Agents (aka AgentTCL) [4, 11, 10, 12] support
CORBA. However, Voyager additionally allows CORBA objects to
be used in the same way as objects remote—enabled by Voyager.

. JDK1.1 also provides RMI support [31], so all systems except

D’Agents can use Java RMI for communication. However, RMI
only provides for synchronous messaging, and is not very efficient.
Most agent systems also provide other forms of communication.

. The Java Security Manager architecture [5] can be used to imple-

ment security in all systems. Most systems have provided for secu-
rity in this way. However, this will only provide for access control,
not encryption and authentication, which some systems (like Con-
cordia [20, 32, 21] and D’Agents) provide additional support for.

Initial selection criteria

We have limited ourselves to evaluating agent systems that could, at least
in theory, be used in the Monads project. This leads to the following four
constraints:

1. Linux Platform. The agent system must run on the Linux operat-

ing system. All pure Java systems are acceptable. This requirement
stems from the fact that Linux is the development platform for the
Mowgli Data Channel Service [1], which is necessary for this project.

. Java Language. The agent system must be able to run agents

written in the Java language. Due to its portability, widespread use
and support, Java is the most likely contender for a general agent
language.

Evaluation version available. An evaluation version of the sys-
tem is crucial for a reliable estimate of the system’s characteristics.
In addition, if none is available, the software is in all probability too
unstable to use.

. Generality. The agent system must be suited to developing all

kinds of mobile agents, not just, for example, Web searching agents.

A Survey on Agent Systems Supporting Java 167

Limitations on the kinds of agents it is possible to create using the
agent system could prove fatal later in the project.

The first constraint is the most restraining. It effectively constrains the
choice of commercial systems to those that are implemented in pure Java.
Fortunately, this includes most important systems. Academic systems
(most notably D’Agents) are more likely to support Linux even if they
are not written in pure Java.

The performance of these systems has not been evaluated, due to time
constraints. It should, however, be noted that the systems which utilize
Java RMI for communication are bound by its perhaps less than optimal
performance. Also, the Voyager [23, 24] system is undergoing performance
optimization before the production version is released.

3 Candidate systems

3.1 Aglets

The Aglets Software Development Kit (ASDK) [15, 17] is developed by
the IBM corporation. The ASDK 1.0 production version has just been
released (April 24, 1998). It runs on all platforms which support JDK
1.1, and currently consists of about 190 core classes (ca. 700 kB).

The name is not just an idle pun on agents and applets; the aglets
programming paradigm closely resembles that of applets, with significant
events in an aglets life having callback methods (like onCreation and
onArrival) in the aglet class.

Still following the applet model, aglets access their environment
through an AgletContext object—similar to the AppletContext for
applets—which corresponds to an execution context. For example, to
create a new Aglet in a given context, createAglet is invoked on the
context.

Movement

IBM is pushing its Agent Transfer Protocol (ATP) [16] as a standard for
transferring agents between networked computers. ATP is very much like
HTTP 1.0 [3], with the same advantages and disadvantages. The main
difference is the methods it supports:

168 Oskari Koskimies

DISPATCH Transport an agent to a remote host.
RETRACT Retrieve an agent from a remote host.
FETCH Retrieve executable code required to execute an agent.

MESSAGE Forward a message to an agent.

ATP can easily be wrapped up in a HTTP request, which enables
ATP to be used from within a firewall, using HTTP tunneling and HTTP
Proxy servers.

While class loading is basically on—demand, JAR [27] files (Java class
archives) will be supported in the future. When aglet class files are in
a JAR file , the whole JAR file will be transferred to the target system
when the agent moves.

3.1.1 Communication

Agents do not refer to other agents directly. Instead, they use AgletProxy
objects. The AgletProxy interface defines methods for accessing the aglet
it represents, for example, sending it messages. The interface is common
to all Aglets, so an AgletProxy is not the same thing as a CORBA or RMI
reference. Its main role is to shield the aglet from unauthorized access.
Currently AgletProxies do not keep track of roaming agents, so once an
agent moves all referencing AgletProxy objects become invalid.

Communication between agents is not based on RMI, but on messages
(however, messages are probably implemented using RMI). Messages can
be of three types:

1. Synchronous messages cause the sender to block until the result
has been returned.

2. Asynchronous messages return immediately with a placeholder
object that can be periodically queried for the results. An agent can
also wait for the reply to arrive, specifying a time limit for the wait.

3. Oneway messages are asynchronous messages that do not return
anything.

A Survey on Agent Systems Supporting Java 169

A message is sent to an agent using one of the sendMessage meth-
ods of its AgletProxy object. Messages received by an agent are stored
in a priority queue (messages can be given priorities), and the agent’s
handleMessage method is then called for each message in turn, giving
the message object as a parameter for the method.

3.1.2 Documentation

ASDK documentation consists of the as yet incomplete Aglets specifica-
tion, JavaDoc API documentation, ATP specification, and some tutorials.
In addition, there is some introductory material created by third parties.
While not extensive, the available documentation is sufficient for learning
the basics of the system.

3.1.3 Security

Aglets may be trusted or untrusted. An agent that is launched locally
and only uses local code is trusted, all other agents are untrusted. Read
and write access to files, object instantiation and window access can be
specified separately for trusted an untrusted agents.

The security measures are implemented using the standard Java Se-
curity Manager architecture. There is no encryption, or trust based on
secure agent ID’s.

3.1.4 Reliability

The only available reliability feature is the preliminary snapshot method
in the aglet class, which saves a checkpoint of the aglet’s state to secondary
storage, and reactivates the aglet from this checkpoint if it is accidentally
killed.

3.1.5 User Interface

One of the ASDK’s strong points is it easy-to-use user interface. Set-
ting up the system is easy, and all example aglets are controlled via GUI
windows. The agent manager interface includes functions for creating,
dispatching, retracting, killing and interrogating agents, as well as for
setting security privileges.

170 Oskari Koskimies

3.1.6 Standard Support

The Aglets development team participates in MASIF [8]. Correspond-
ingly, TIOP [25] may be supported in the future as a transport proto-
col. However, currently MASIF is not supported, and there is no explicit
CORBA support.

3.1.7 Distinguishing features

There is some additional agent collaboration support in the form of a set
of templates called Java—based Moderator Templates (JMT) that define
the basic collaborative behaviors of mobile agents. JMT allows developers
to build a complex plan by simply combining them so that multiple agents
can work together toward a common goal. This is done using moderator
agents, which manage and combine the work of other agents.

The JKQML [14] framework from IBM alphaWorks supports KQML
communication between aglets.

3.1.8 Openness

Source code is provided for the some of the core classes, but not for ones
containing important implementation details. It is probably only meant
as additional documentation. The Aglets APT does not provide hooks for
extending ASDK functionality.

3.1.9 Evaluation

Aglets is fairly reliable medium-range agent system. While it does not
provide all the advanced features of Voyager, or the security and reliability
of Concordia, it is also a lighter system. Its main advantage is its simplicity
and user—friendliness. On the other hand, there is no CORBA support,
and providing the necessary extensions to the system can become hard
when neither source code or extension hooks are available.

Advantages:

e Nice, easy-to-use graphical user interface
e MASIF involvement

e Good selection of message types

A Survey on Agent Systems Supporting Java 171

e Basic security support

Firewall support via HTTP tunneling for ATP

Familiar applet-like programming model

Collaboration support

Backing of a large corporation
Disadvantages:

e No CORBA support

No hooks for extending system functionality

Agent references become stale when an agent moves

Reliability is only beginning to get attention

3.2 Concordia

Concordia [20, 32, 21] has been developed by Mitsubishi Electric Infor-
mation Technology Center America. Version 1.0 has been available since
January 19th, 1998. It requires JDK 1.1.3, and contains about 480 core
classes (ca. 1.9 Mb), which makes it the largest system for the moment.
Also, the above figure does not include the third party classes (about 600
classes, taking up ca. 2.4 Mb) that the Concordia package includes.

3.2.1 Movement

The Concordia agent programming model is based on itineraries. An
itinerary contains a list of target systems, and for each target system
there is method that will be invoked once that target system is reached.
The itinerary of an agent may be modified by the agent itself, by the agent
system, or by the user via a graphical user interface.

Class loading in Concordia is dynamic, but after a class has been
loaded, it is packaged in a special data structure which travels with the
agent. While this keeps things efficient, it does not help in the case where
the agent does not need a class before long after it has been dispatched.

172 Oskari Koskimies

3.2.2 Communication

For agent-to-agent communication, Concordia provides distributed syn-
chronous and asynchronous events. The events differ from Aglet mes-
sages in the sense that they cannot return a value; otherwise the two
mechanisms have a lot in common. However, Concordia events can be
multicast to a group of agents, and they allow a primitive form of location—
transparent communication by using non—mobile event manager objects.

3.2.3 Documentation

Documentation consists of an architecture description and a separate doc-
ument about security and reliability. The installation package also has
a developers guide in HTML format, including instructions for getting
started. The startup documentation is poor, though, containing errors
and omissions.

Generally speaking, the documentation is somewhat below par, but
does explain the basics of agent programming in the Concordia system.

3.2.4 Security

Security is where Concordia shines. Secure communications are imple-
mented using SSL [6]. Agent data is encrypted during transfer and
storage, and security permissions for an agent depend on the user who
launched the agent, in contrast to, for example, Aglets where only locally
created agents are trusted. However, a user is authenticated by a pass-
word that the agent carries, not by a certificate with a secure hash of
agent code. This means that user identification does not guarantee that
the agent contains the same code as when the user launched it.

3.2.5 Reliability

Reliability is another of Concordia’s strengths. Agent movement is fully
transactional, meaning that agent state is saved to secondary storage im-
mediately upon arrival, and the agent transfer does not complete before
the save is successful.

Agents are automatically checkpointed just before departure in the
source system, and just after arrival in the destination system (as outlined
above). If an agent server crashes, agent state can be restored from the

A Survey on Agent Systems Supporting Java 173

most recent checkpoint. The checkpoint just before departure is to save
the results of processing, in case the server crashes while attempting to
transfer the agent.

The weakness of this automatic checkpointing is that it fails in the case
where agent operations are not idempotent. This can partly be handled
by explicitly requesting the agent to be checkpointed at key points in the
processing.

3.2.6 User Interface

While the graphic user interface is probably the most advanced of the
systems presented here, it is also the most unreliable. However, this may
be because of JDK problems.

Problems aside, the GUI has perhaps the best general agent control
method. The itinerary can be modified by the user without any program-
ming knowledge. All that is required is that the agent programmer has
defined a separate method for each type of host. E.g. there can be one
method for querying data, and another for returning results.

The GUI also has a wealth of configuration options, allowing different
services to be started or stopped, agents installed and launched, security
options specified etc.

3.2.7 Standard Support

Concordia does not support any agent standards.

3.2.8 Distinguishing Features

Like the ASDK, Concordia provides a collaboration framework, although
Concordia’s framework is much simpler, at least conceptually. It supports
the common case where a single master agent waits for multiple slaves to
accomplish their tasks and then processes the results. The structure may
extend to several levels: slaves can themselves be masters for other slaves.

3.2.9 Openness

Aside from examples, Concordia does not come with any source code. The
Service Bridge, which is meant for providing an interface from Concordia

174 Oskari Koskimies

agents to the services available at the various machines in the network,
is the only extension API provided. It is only suitable for adding new
services, not for modifying Concordia behaviour.

3.2.10 Evaluation

Concordia is a large system, with comparatively extensive reliability and
security features. However, agent communication is limited, and needs
RMI to be complete. Even so, there is no way to invoke a remote method
asynchronously.

Concordia documentation is barely adequate, and not much thought
has been put into the installation procedure: Concordia installation re-
quires Korn shell to be installed on your system and was, with the possible
exception of D’Agents which was not yet available, the most difficult sys-
tem to install. The overall impression is that of an unfinished product.

Advantages:

Good security and reliability features

e Nice user interface

Collaboration support

Distributed events

Flexible generic agent control
Disadvantages:

e Unfinished system and documentation

e No messaging system (although events are provided). Instead, RMI
has to be used, which means asynchronous (future) messages are
not possible

e Messaging is not migration—transparent
e Large system size

e No extension APIs or source

A Survey on Agent Systems Supporting Java 175

3.3 D’Agents (AgentTCL)

D’Agents [4, 11, 10, 12] (formerly AgentTCL) is developed by Dartmouth
College. It is in several ways unique with respect to the systems evalu-
ated here. Firstly, it is an academic system, with full source available.
Secondly, it implements agent movement in a way which allows execution
state to be captured. And last (and least pleasant), there is no publicly
available version which supports Java, although there are internal versions
that do.

The last point should by rights have excluded the system from this
evaluation, but a public version with Java is promised “Any Day Real Soon
Now?”, and the source availability makes D’Agents too good a possibility
to ignore.

3.3.1 Movement

By using a modified Java runtime, D’Agents is able to capture agent ex-
ecution state. This makes it possible for D’Agents to continue execution
immediately after the move command at the new node. While this pro-
gramming model is not intrinsically more powerful than the one used by
other systems, and could actually lead to code that is harder to under-
stand, it does make agent programming more straightforward.

The major disadvantage of using a custom Java runtime is that
the Java runtime version that D’Agents supports will unavoidably lag
behind—currently it is in version 1.0.2, whereas the most recent version
is 1.1.6. One is also required to license the JDK if one wants to get the
sources for the modified runtime.

Once an agent has been transferred, it cannot load any classes from its
origin host. Also, since only Java 1.0.2 is supported, RMI is not available.
This means that all non—system classes that the agent might need must
be transferred with the agent. Serialization does not capture classes which
have no instances, so it is necessary for the agent to provide a list of classes
it needs.

It should perhaps be noted that while all other agent system use Java
Object Serialization to move agents, D’Agents uses its own state capture
code, partially borrowed from the Sumatra [2] system. This becomes an
issue if agent movement is standardized, because the bytestream created
by Java Object Serialization is in all likelihood incompatible with the

176 Oskari Koskimies

one created by the custom code in D’Agents. On the other hand, the
D’Agents agent programming model is unique in any case, because of the
execution state capture, which means that D’Agent agents are unlikely to
be compatible with other systems.

3.3.2 Communication

D’Agents implements synchronous messages and events (they are essen-
tially the same thing in D’Agents, as messages do not return anything).
Stream communication is also supported. There is no location trans-
parency: Messages must be sent to the host where the receiver agent
resides.

3.3.3 Documentation

Since D’Agents is an academic project, there is a lot of written material
available. Unfortunately the most important one, the tutorial, has not
been updated since version 1.1. The is therefore not known for certain
what kind of Java API the system will have.

3.3.4 Security

D’Agents uses the Pretty Good Privacy (PGP) [33] software as an external
module to accomplish encryption. Data to be encrypted is saved in a
file, encrypted and/or signed using PGP, and the result is then sent to
its destination. Both agents and messages can be encrypted to avoid
interception, and digitally signed to reliably identify their owner [7].

PGP uses RSA [26] public key cryptography for authentication, and
the IDEA [19] algorithm for encryption. The problem with these security
features is the slowness of the RSA algorithm; using PGP introduces a
significant performance penalty. In addition, implementing PGP use as
a separate process introduces additional overhead when compared to a
more tightly integrated encryption system.

Agent can be either anonymous or owned. Like in Concordia, agent
permissions depend on the owner of the agent. Anonymous agents are
untrusted and are allowed minimal access to resources if they are accepted
at all.

A Survey on Agent Systems Supporting Java 177

3.3.5 Reliability

At the moment, the only reliability—oriented mechanism is a docking sys-
tem (see Figure 1, where mobile computers are assigned a docking station
where agents can dock to wait for the mobile computer to be connected
to the network. When the mobile computer connects to the network, it
alerts the docking station, which wakes up all docked agents. However, the
docking system currently only handles migration—it does not help when
an agent tries to send a message to a disconnected mobile computer.

1. Agent optionally tries . ﬁg‘ﬂ'l:lf

i to jump directly to the
3.Ch jump h p
nm-:rl:;g:;“ms mobile device &~

r 2. M device &
J."' unreachable,
agent goes to
‘_."‘ the dock
o~ machine
o "‘ Quene of
o sleeping agents
o ' to M
_.*"' 4. Mobile device D]]I
’ notifies the dock of P
its network location = i
: - .
[2:3)

i M_Dack

M (laptop) { permanently
ptop connected
machine)

5. Waiting agents
transferred to M

Figure 1. D’Agents docking system

178 Oskari Koskimies

Reliability is one of the main deficiencies in the current version of
D’Agents, and thus also one of the most important directions for further
development. A checkpointing practice similar to that in Concordia is
planned, and partially implemented. In addition, the system designers are
considering methods to guard against unacceptable delays due to server
crashes.

3.3.6 User Interface

While graphical user interfaces for agents can easily be constructed using
Agent Tcl and Tk, there is no graphical user interface for server manage-
ment. Agents can be tracked by a special debugging tool, which allows
agent movement and communications to be monitored. However, the tool
only supports Tcl and works by instrumenting agent code.

3.3.7 Standard Support

Currently D’Agents does not support any standards, but the people be-
hind the system express an interest in supporting MASIF once it becomes
accepted. However, the unique state capture model of D’Agents may
present problems here.

3.3.8 Distinguishing features

D’Agents supports multiple languages: Tcl, Java and Scheme. In this
regard, the system is unique of those reviewed here. D’Agents is also the
only system reviewed here that has at least partially taken into account
mobile computers which are only intermittently connected to the net-
work. This is accomplished through a docking system [9] (see Reliability
above).

A debugging tool [13] can be used to instrument agent code, which
allows execution, movement and communications to be monitored. How-
ever, the tool currently only supports Tcl.

A Yellow Pages service [12] allows an agent to identify, locate and
use previously unknown services. A service agent announces a service by
posting an interface description of the service.

For non—programmers, D’Agents offers a simple graphical agent con-
struction program [12], which allows Tcl agents to be constructed from

A Survey on Agent Systems Supporting Java 179

predefined components. The principle is similar to Java Beans [30].

An important justification for mobile agents is the performance im-
provement they provide by migrating code and using local messaging.
However, when bandwidth is abundant and CPU time at the premium, it
may be more efficient to use remote messaging instead of agent movement.
Deciding on the optimal migration strategy is a difficult issue, and subject
to ongoing research by the D’Agents team [12]. Network monitoring, ma-
chine monitoring and a decision—making library are under development.

3.3.9 Openness

Since source code is available, D’Agents can be regarded as a fully open
system. The only caveat is that code for the modified Java runtime re-
quires a license from Sun Microsystems.

3.3.10 Evaluation

D’Agents is first and foremost an open, academic system. For example,
while it offers a very limited feature set (e.g. with respect to messaging),
on the other hand it is the only agent system presented here to explicitly
support mobile computing. This is typical of academic systems, for full
functionality is not necessary for academic purposes. Instead, the area
covered by the system is very broad and branching, spiraling into whatever
directions the developers have thought interesting, or a suitable student
project.

It should be noted that while D’Agents is no longer called AgentTCL,
it is still a very Tcl—centric system. In particular, features are first imple-
mented in Tcl, and then moved to Java. This means that Java language
features are not taken advantage of.

Advantages:

e Full source code available (but license from Sun Microsystems is
required)

Academic developer makes co—operation easier

Agent movement captures execution state

e Language support for multiple languages: Tcl, Java and Scheme

180 Oskari Koskimies

e Simple agents are often easier to code in Tcl

e Security is on the same level (and partially above) as that of Con-
cordia

e Docking system takes mobile computing into account
Disadvantages:

e Java version is not yet available
e Only supports Java 1.0.2: No RMI or Object Serialization
e Java is a secondary language in the project

e Agent communication is very primitive, only synchronous messages
and stream transfer

e Reliability is only beginning to get noticed

e No standard support

3.4 Voyager

Voyager [23, 24] is developed by Objectspace, the people behind the Java
Generic Library [22] (Java version of STL), which has been incorporated
into the Java Foundation Classes [28]. The Voyager system is now in ver-
sion 2.0 Beta, which consists of about 280 core classes (ca. 770 kB). It is
by far the most professional and feature—rich product evaluated here. It is
worth noting that Voyager is the only system that was developed as prod-
uct (as compared to a research project) from the beginning. One of the
main Voyager features is its striving towards distribution transparency;
where possible, distribution has been hidden from the programmer.

3.4.1 Movement

The move command takes as parameters the target system and the name
of the method that should be called once the target system has been
reached. Although itineraries like those in Concordia are not explicitly
supported, they are extremely simple to implement. However, there is no
GUI for managing itineraries.

A Survey on Agent Systems Supporting Java 181

Classes are not fetched on—demand; instead, all agent classes are
moved when the agent moves. Unnecessary class transfer can be avoided
by using interfaces.

3.4.2 Communication

Voyager provided a comprehensive array of messaging alternatives: Syn-
chronous, asynchronous, one-way and (software) multicast messages are
all catered for. Messaging is both location— and migration—transparent
(via a federated directory service and message forwarders), and timeouts
can be specified for asynchronous messages. The hierarchical “Space” mes-
saging architecture (see Figure 2) provides for scalable group communica-
tion. In addition, “smart messages” [24], which are essentially miniature
agents, can implement things like store-and-forward functionality.

Messaging looks like Java invocations to the programmer, but RMI is
not used. The necessary stubs are created automatically and on—demand.
Distributed events compatible with the Java Beans Event model are also
available.

3.4.3 Documentation

Voyager has by far the best documentation of the agent systems. The
provided documentation includes a 375—page Userguide, API documen-
tation, a Technical Overview with information on how to get started, a
comparison of Voyager 1.0 and other agent systems, and some preliminary
documentation on Voyager’s upcoming CORBA and transaction services.

3.4.4 Security

Security is one of Voyager’s main deficiencies. It only provides for the
standard applet—like security model implemented by the Java Security
Manager architecture.

182 Oskari Koskimies

message
L D T -

londaon: 7000 dallas:a8000

| |
| |
| |
| |
¥ +

fokyo:8000 perth:10000

A Message being delivered
¥ to local objects

——————— -+ Cloned message being
duplicated

@ Subspace

Subspace Link

Figure 2. The Voyager “Space” messaging architecture

A Survey on Agent Systems Supporting Java 183

3.4.5 Reliability

Voyager provides its own database service, which can be used to make ob-
jects persistent. Persistent objects can be automatically loaded to mem-
ory during server startup, which allows a kind of recovery mechanism.
Reliable agent movement is also supported.

3.4.6 User Interface

Voyager has no graphical user interface. There are also no utilities for
creating and destroying agents, comparable to the management GUIs of
other agent systems; while these are not very useful in serious devel-
opment, where such utilities would probably have to be specially built
anyway, it would simplify trying out the system.

3.4.7 Standard Support

The production version of Voyager 2.0 (said to be available in Summer
1998) will provide full CORBA support. Unofficially, Voyager developers
have said that “Once MAF becomes a standard it is likely that we will
become compliant.”

3.4.8 Distinguishing features

The features that set Voyager apart from the rest are its Transaction
Service (in development, and not free), CORBA support, superior docu-
mentation, and flexible communication system.

3.4.9 Openness

No source code is provided, apart from example programs. However,
Voyager does provide a few hooks for extending system functionality. One
such hook is the possibility to use your own transport service instead of
traditional sockets. A different service can be used for different destination
hosts. Other hooks are the “smart” messaging system and a possibility to
extend the class loading mechanism. Voyager developers have also talked
about more hooks being available in the production version; whether this
is true or not remains to be seen.

184

Oskari Koskimies

3.4.10 Evaluation

Two things characterize Voyager:

1. Professional standard. Unlike other systems, Voyager is more a
product than an experiment. This is not to say that it does not
contain bugs.

2. The Voyager philosophy seems to be “by coders, for coders”. There is
no attractive GUIL, the example agents are simple and unassuming,
each highlighting a specific feature of the system. But substantial
effort has been invested into making agent programming as painless
as possible—assuming you are a coder.

Advantages:

e Professional product.

e Superior documentation.

e Advanced messaging facilities—only system to support migration
transparency.

e Distributed Java Beans compatible events.

e Reliability support.

e Extension APIs.

e Transaction Service (in development, and not free).

¢ Full CORBA support (production version).

Disadvantages:

It is for the moment unsure exactly how extensible the production
version will be, and if that will be enough for the purposes of the
project. It may be necessary to license the source code, the cost of
which is unknown.

Security is nonexistent, and reliability support is not all that exten-
sive either.

While not huge, the system is certainly large.

No graphical user interface.

A Survey on Agent Systems Supporting Java

185

3.5 Comparison and Conclusions

Table 1. Comparison of agent systems

System Advantages Disadvantages

Aglets Good Messaging Extension APIs
Good GUI Reliability
MASIF involvement
Basic security
KQML support

Concordia Good Security Extension APIs
Good reliability Unfinished system
Good GUI Unfinished docs
Agent control Only RMI comm.

Large system

D’Agents Source code No Java yet
Many languages Only Java 1.0.2
Good security Primitive comm.
Mobility support Primarily TCL
Academic project No reliability

Voyager Professional product ~ Extensibility?
Superior docs No security
Advanced comm. No GUI

Reliability support

Full CORBA support

Transaction service

No management utils

Large system

As Table 1 shows, there is no single best system. Each system is good
in some areas, and poor in others. However, Voyager comes very close to
achieving supremacy. The suitability of the systems is outlined below:

Aglets Aglets is the best introductory system, suitable for those who
want to try out agent programming. It is easy to install, and has
an simple but effective GUI for controlling the agents.

Concordia The designers of Concordia have paid special attention to
reliability and security, and in this area Concordia has the upper

hand.

186 Oskari Koskimies

D’Agents D’Agents is an academic system, and thus much more “open”
than the other systems. Full source code is freely available, making
the system uniquely suitable for research work. In addition, the
system supports several languages, whereas the other systems only
support Java.

Voyager Voyager is by far the most advanced system of the four, offering
a vast array of features. It also goes to great lengths to make agent
programming easy and intuitive. For generic, commercial agent ap-
plications it is without doubt the best choice.

References

[1] T. Alanko, M. Kojo, M. Liljeberg, and K. Raatikainen. Mowgli:
Improvements for Internet Applications Using Slow Wireless Links.
In Proceedings of the 8th IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications, Helsinki, Finland,
September 1997.

[2] Anurag Acharya, M. Ranganathan, and Joel Saltz. Sumatra: A
Language for Resource-aware Mobile Programs. In J. Vitek and
C. Tschudin, editors, Mobile Object Systems: Towards the Pro-
grammable Internet, volume 1222, pages 111-130. Springer-Verlag:
Heidelberg, Germany, 1997.

[3] T. Berners-Lee, R. T. Fielding, and H. F. Nielsen. Hypertext Trans-
fer Protocol — HTTP/1.0. Internet draft, IETF, HTTP Working
Group, December 1994. Available at
<URL:http://www.ics.uci.edu/pub/ietf/http/

draft-fielding-http-spec-01.ps.Z>.

[4] Dartmouth College. D’Agents. Available at
<URL:http://www.cs.dartmouth.edu/~agent/>.

[5] Marlena Erdos, Bret Hartman, and Marianne Mueller. Security Ref-
erence Model for the Java Developer’s Kit 1.0.2. Technical report,
Sun Microsystems, Inc., 1996.

A Survey on Agent Systems Supporting Java 187

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Pro-
tocol Version 3.0, 1996. Available at
<URL:http://www.netscape.com/eng/ssl3/draft302.txt>.

Gray R. S., Cybenko G., Kotz D., and Rus D. D’Agents: Security in
a multiple-language, mobile-agent system. In Giovanni Vigna, editor,
Mobile Agent Security, Lecture Notes in Computer Science. Springer-
Verlag, 1998. To appear.

GMD FOKUS and IBM Corporation. Mobile Agent System Interop-
erability Facilities Specification, November 1997. Standard proposal.

Gray R. S., Kotz D., Nog S., Rus D., and Cybenko G. Mobile Agents
for Mobile Computing. Technical Report PCS-TR96-285, Dartmouth
College, Computer Science, Hanover, NH, May 1996.

Gray R., Kotz D., Nog S., Rus D., and Cybenko G. Mobile agents:
The next generation in distributed computing. In Second Aizu Inter-
national Symposium on Parallel Algorithms/Architectures Synthesis
(pAs ’97), pages 824, Fukushima, Japan, March 1997. IEEE Com-
puter Society Press.

Gray R. S. Agent Tcl: A Transportable Agent System. In Proceedings
of the CIKM Workshop on Intelligent Information Agents, Fourth In-
ternational Conference on Information and Knowledge Management
(CIKM 95), Baltimore, Maryland, 1995.

Gray R. S. Agent Tcl: A flexible and secure mobile-agent system.
Technical Report PCS-TR98-327, Dartmouth College, Computer Sci-
ence, Hanover, NH, January 1998.

Hirschl M. and Kotz D. AGDB: A Debugger for Agent Tcl. Techni-
cal Report PCS-TR97-306, Dartmouth College, Computer Science,
Hanover, NH, February 1997.

IBM alphaWorks. JKQML. Available at
<URL:http://www.alphaWorks.ibm.com /formula/jkqml>.

IBM Corporation. Aglets Software Development Kit. Available at
<URL:http://www.trl.ibm.co.jp/aglets/>.

188

Oskari Koskimies

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Danny B. L. and Yariv A. Agent Transfer Protocol — ATP/0.1 . IBM
Tokyo Research Laboratory, March 1997.

Danny B. L. and Daniel T. Programming Mobile Agents in Java —
A White Paper. Technical report, IBM Corp., 1996.

Liljeberg M., Helin H., Kojo M., and Raatikainen K. Enhanced Ser-
vice for World-Wide Web in Mobile WAN Environment. Technical
Report C-1996-28, Department of Computer Science, University of
Helsinki, 1996. Revised version published in Proceedings of the IEEE
Global Internet 1996 Conference, London, England, November 20-21,
1996.

Lai X., Massey J. L., and Murphy S. Markov ciphers and differential
cryptanalysis. In Donald W. Davies, editor, Proceedings of Advances
in Cryptology (EUROCRYPT ’91), volume 547 of Lecture Notes in
Computer Science, pages 17-38. Springer-Verlag: Heidelberg, Ger-
many, 1991.

Mitsubishi Electric Information Technology Center America. Con-
cordia. Available at
<URL:http://www.meitca.com/HSL/Projects/Concordia/>.

Mitsubishi Electric Information Technology Center America. Mobile
agent computing. A White Paper, January 1998.

ObjectSpace, Inc. ObjectSpace JGL — The Generic Collection Li-
brary for Java. Version 3.0. Available at
<URL:http://www.objectspace.com/jgl/>.

ObjectSpace, Inc. ObjectSpace Voyager. Available at
<URL:http://www.objectspace.com/voyager/>.

ObjectSpace, Inc. ObjectSpace Voyager Core Package Techical

Overview, December 1997. Version 1.0. Available at

<URL:http://www.objectspace.com/voyager /whitepapers/
VoyagerTechOview.pdf>.

Object Management Group. The Common Object Request Broker:
Architecture and Specification, February 1998. Version 2.2. Available
at <URL:http://www.omg.org/corba/c2indx.htm>.

A Survey on Agent Systems Supporting Java 189

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

RSA Laboratories. RSA Encryption Standard, 1993. Available at
<URL:http://www.rsa.com/rsalabs/pubs/PKCS/ps/pkcs-1.ps.gz>.

Sun Microsystems. JAR — Java Archive. Available at
<URL:http://java.sun.com /products/jdk/1.1/docs/guide/jar/>.

Sun Microsystems. Java Foundation Classes. Available at
<URL:http://java.sun.com /products/jfc/>.

Sun Microsystems. Java IDL. Available at
<URL:http://java.sun.com/products/jdk/1.2/docs/guide /idl/>.

Sun Microsystems. Java Beans(TM), July 1997. Graham Hamilton
(ed.). Version 1.0.1.

Sun Microsystems. Java Remote Method Invocation — Distributed
Computing for Java. White Paper, March 1998.

Wong D. et al. Concordia: An Infrastructure for Collaborating Mo-
bile Agents. In K. Rothermel and R. Popescu-Zeletin, editors, Proc.
First Int. Workshop on Mobile Agents, volume 1219 of Lecture Notes
in Computer Science, pages 86—97, Berlin, 1997. Springer-Verlag,
Berlin.

Zimmermann P. Pretty Good Privacy. Available at
<URL:http://www.pgpi.com/>.

